Enzymes controlling intracellular second messengers in bacteria, such as c-di-GMP, often affect some but not other targets. How such specificity is achieved is understood only partially. Here, we present a novel mechanism that enables specific c-di-GMP-dependent inhibition of the antifungal antibiotic production.
View Article and Find Full Text PDFC-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP.
View Article and Find Full Text PDFCyclic di-AMP (c-di-AMP) is a relatively new member of the family of bacterial cyclic dinucleotide second messengers. It has attracted significant attention in recent years because of the abundant roles it plays in a variety of Gram-positive bacteria. The structural features that allow diverse bacterial proteins to bind c-di-AMP are not fully understood.
View Article and Find Full Text PDFThe mammalian ER protein STING (stimulators of interferon genes) is an important innate immunity protein for linking detection of novel secondary messengers c-di-GMP, c-di-AMP, cGAMP or cytosolic dsDNA to the activation of TANK kinase 1 and its downstream interferon regulator factor 3. Recently quite a few of crystal structures representing different states of the C-terminal domain (CTD) of human and murine STING (hSTING and mSTING) in complex with c-di-GMP, cGAMP or DMXAA have been reported. However, the C-terminal 42 residues of STING-CTD, which may be important in mediating the downstream reactions, is invisible or absent in all reported X-ray structures.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
March 2014
FleQ is a master regulator that controls bacterial flagellar gene expression. It is a unique enhancer-binding protein or repressor protein comprising an N-terminal FleQ domain, an AAA(+)/ATPase σ54-interaction domain and a helix-turn-helix DNA-binding domain. FleN is a putative ATPase with a deviant Walker A motif that works together with FleQ by binding to the FleQ N-terminal domain to fully express pel, psl and cdr operons in the presence of c-di-GMP to enhance biofilm formation.
View Article and Find Full Text PDFCyclic guanosine 3',5'-monophosphate (cyclic GMP) is a second messenger whose role in bacterial signalling is poorly understood. A genetic screen in the plant pathogen Xanthomonas campestris (Xcc) identified that XC_0250, which encodes a protein with a class III nucleotidyl cyclase domain, is required for cyclic GMP synthesis. Purified XC_0250 was active in cyclic GMP synthesis in vitro.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
March 2013
The mammalian ER protein STING (stimulator of interferon genes; also known as MITA, ERIS, MPYS or TMEM173) is an adaptor protein that links the detection of cytosolic dsDNA to the activation of TANK-binding kinase 1 (TBK1) and its downstream transcription factor interferon regulatory factor 3 (IFN3). Recently, STING itself has been found to be the direct receptor of bacterial c-di-GMP, and crystal structures of several human STING C-terminal domain (STING-CTD) dimers in the apo form or in complex with c-di-GMP have been published. Here, a novel set of structures of mouse STING-CTD (mSTING(137-344)) in apo and complex forms determined from crystals obtained under different crystallization conditions are reported.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
October 2012
Bacterial polynucleotide phosphorylase (PNPase) is a 3'-5' processive exoribonuclease that participates in mRNA turnover and quality control of rRNA precursors in many bacterial species. It also associates with the RNase E scaffold and other components to form a multi-enzyme RNA degradasome machinery that performs a wider regulatory role in degradation, quality control and maturation of mRNA and noncoding RNA. Several crystal structures of bacterial PNPases, as well as some biological activity studies, have been published.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
October 2012
Cyclic di-GMP (c-di-GMP) is a novel secondary-messenger molecule that is involved in regulating a plethora of important bacterial activities through binding to an unprecedented array of effectors. Proteins with a canonical PilZ domain that bind c-di-GMP play crucial roles in regulating flagellum-based motility. In contrast, noncanonical type II PilZ domains that do not effectively bind c-di-GMP regulate twitching motility, which is dependent on type IV pili (T4P).
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
August 2012
The innate immune response is the first defence system against pathogenic microorganisms, and cytosolic detection of pathogen-derived DNA is believed to be one of the major mechanisms of interferon production. Recently, the mammalian ER membrane protein STING (stimulator of IFN genes; also known as MITA, ERIS, MPYS and TMEM173) has been found to be the master regulator linking the detection of cytosolic DNA to TANK-binding kinase 1 (TBK1) and its downstream transcription factor IFN regulatory factor 3 (IRF3). In addition, STING itself was soon discovered to be a direct sensor of bacterial cyclic dinucleotides such as c-di-GMP or c-di-AMP.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
March 2012
c-di-GMP is a major secondary-messenger molecule in regulation of bacterial pathogenesis. Therefore, the c-di-GMP-mediated signal transduction network is of considerable interest. The PilZ domain was the first c-di-GMP receptor to be predicted and identified.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
December 2011
Cyclic diguanosine monophosphate (c-di-GMP) is a key signalling molecule involved in regulating many important biological functions in bacteria. The synthesis of c-di-GMP is catalyzed by the GGDEF-domain-containing diguanylate cyclase (DGC), the activity of which is regulated by the binding of product at the allosteric inhibitory (I) site. However, a significant number of GGDEF domains lack the RxxD motif characteristic of the allosteric I site.
View Article and Find Full Text PDFPilZ domain is one of the key receptors for the newly discovered secondary messenger molecule cyclic di-GMP (c-di-GMP). To date, several monomeric PilZ domain proteins have been identified. Some exhibit strong c-di-GMP binding activity, while others have barely detectable c-di-GMP binding activity and require an accessory protein such as FimX to indirectly respond to the c-di-GMP signal.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
June 2010
Iron is vital to the majority of prokaryotes, with ferrous iron believed to be the preferred form for iron uptake owing to its much better solubility. The major route for bacterial ferrous iron uptake is found to be via an Feo (ferrous iron-transport) system comprising the three proteins FeoA, FeoB and FeoC. Although the structure and function of FeoB have received much attention recently, the roles played by FeoA and FeoC have been little investigated to date.
View Article and Find Full Text PDFCyclic-di-GMP [bis-(3'-5')-cyclic diguanosine monophosphate] controls a wide range of functions in eubacteria, yet little is known about the underlying regulatory mechanisms. In the plant pathogen Xanthomonas campestris, expression of a subset of virulence genes is regulated by c-di-GMP and also by the CAP (catabolite activation protein)-like protein XcCLP, a global regulator in the CRP/FNR superfamily. Here, we report structural and functional insights into the interplay between XcCLP and c-di-GMP in regulation of gene expression.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
October 2009
Recent studies have identified c-di-GMP as a novel secondary messenger molecule that is heavily involved in regulating bacterial biofilm formation, motility, production of pathogenicity factors etc. PilZ domain-containing proteins have been suggested and subsequently proved to be the c-di-GMP receptor. However, considering the diverse biological functions exhibited by c-di-GMP, it may be that receptors other than the PilZ domain exist.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
October 2009
Stenotrophomonas maltophilia has emerged as a critical nosocomial opportunistic pathogen in the last few years. It is resistant to many clinically useful antibiotics; hence, new ways of combatting this bacterium are essential. Diffusible signal factor (DSF) dependent quorum sensing is a major mechanism of virulence induction in S.
View Article and Find Full Text PDFConsiderable insights into the oxidoreduction activity of the Xanthomonas campestris bacterioferritin comigratory protein (XcBCP) have been obtained from trapped intermediate/ligand complex structures determined by X-ray crystallography. Multiple sequence alignment and enzyme assay indicate that XcBCP belongs to a subfamily of atypical 2-Cys peroxiredoxins (Prxs), containing a strictly conserved peroxidatic cysteine (C(P)48) and an unconserved resolving cysteine (C(R)84). Crystals at different states, i.
View Article and Find Full Text PDFThe crystal structure of XC1028 from Xanthomonas campestris has been determined to a resolution of 2.15 A using the multiple anomalous dispersion approach. It bears significant sequence identity and similarity values of 64.
View Article and Find Full Text PDFUsing X-ray diffraction methodology, we have successfully determined the tertiary structures of the apo- and GTP-bound forms of uridylate kinase (UMPK) from the gram-negative plant pathogen Xanthomonas campestris with crystals grown under a strong magnetic field. The flexible ATP- and UMP-binding loops are clearly shown under this situation. X.
View Article and Find Full Text PDFThe first gluconolactonase crystal structure from bacteria has been determined to a resolution of 1.61 A using X-ray crystallography. It belongs to the senescence marker protein 30/gluconolaconase superfamily but exhibits substrate specificity mainly toward D-glucono-delta-lactone.
View Article and Find Full Text PDFThe crystal structure of the C-terminal domain of a hook-capping protein FlgD from the plant pathogen Xanthomonas campestris (Xc) has been determined to a resolution of ca 2.5 A using X-ray crystallography. The monomer of whole FlgD comprises 221 amino acids with a molecular mass of 22.
View Article and Find Full Text PDFThe crystal structure of the DFA0005 protein complexed with alpha-ketoglutarate (AKG) from an alkali-tolerant bacterium Deinococcus ficus has been determined to a resolution of 1.62 A. The monomer forms an incomplete alpha7/beta8 barrel with a protruding alpha8 helix that interacts extensively with another subunit to form a stable dimer of two complete alpha8/beta8 barrels.
View Article and Find Full Text PDF