Purpose: To describe the clinical characteristics of refugees with HIV from Ukraine that seek continuation of medical care in Germany.
Methods: Fourty-six refugees with HIV that had left Ukraine between 24 February and 30 December 2022 were examined. Information on patients' history was obtained using a standardized questionnaire for clinical care.
Am J Physiol Endocrinol Metab
September 2023
High levels of plasma lactate are associated with increased mortality in critically injured patients, including those with severe burns. Although lactate has long been considered a waste product of glycolysis, it was recently revealed that it acts as a potent inducer of white adipose tissue (WAT) browning, a response implicated in mediating postburn cachexia, hepatic steatosis, and sustained hypermetabolism. Despite the clinical presentation of hyperlactatemia and browning in burns, whether these two pathological responses are linked is currently unknown.
View Article and Find Full Text PDFDe novo beige adipocyte biogenesis involves the proliferation of progenitor cells in white adipose tissue (WAT); however, what regulates this process remains unclear. Here, we report that in mouse models but also in human tissues, WAT lipolysis-derived linoleic acid triggers beige progenitor cell proliferation following cold acclimation, β3-adrenoceptor activation, and burn injury. A subset of adipocyte progenitors, as marked by cell surface markers PDGFRα or Sca1 and CD81, harbored cristae-rich mitochondria and actively imported linoleic acid via a fatty acid transporter CD36.
View Article and Find Full Text PDFSepsis has become the leading cause of death in burn patients. Furthermore, sepsis and septic complications result in significant morbidities and longer hospitalization, which has profound impacts on the healthcare system. Despite this, sepsis in burn patients is surprisingly poorly understood and characterized.
View Article and Find Full Text PDFObjectives: People living with HIV (PLWH) with low CD4 T-cell counts may be at a higher risk for severe coronavirus disease 2019 (COVID-19) outcomes and in need of efficient vaccination. The World Health Organization (WHO) now recommends prioritizing PLHIV for COVID-19 vaccination. Data on immune responses after messenger RNA (mRNA) vaccination in PLHIV in relation to CD4 counts are scarce.
View Article and Find Full Text PDFSevere burn-induced inflammation and subsequent hypermetabolic response can lead to profound infection and sepsis, resulting in multiple organ failure and high mortality risk in patients. This represents an extremely challenging issue for clinicians as sepsis is the leading cause of mortality in burn patients. Since hyperinflammation and immune dysfunction are a result of an immune imbalance, restoring these conditions seem to have promising benefits for burn patients.
View Article and Find Full Text PDFBACKGROUNDThe incidence of burn injuries in older patients is dramatically increasing as the population of older people grows. Despite the increased demand for elderly burn care, the mechanisms that mediate increased morbidity and mortality in older trauma patients are unknown. We recently showed that a burn injury invokes white adipose tissue browning that leads to a substantially increased hypermetabolic response associated with poor outcomes.
View Article and Find Full Text PDFHypermetabolism following severe burn injuries is associated with adipocyte dysfunction, elevated beige adipocyte formation, and increased energy expenditure. The resulting catabolism of adipose leads to detrimental sequelae such as fatty liver, increased risk of infections, sepsis, and even death. While the phenomenon of pathological white adipose tissue (WAT) browning is well-documented in cachexia and burn models, the molecular mechanisms are essentially unknown.
View Article and Find Full Text PDFCritical illnesses, including sepsis, cancer cachexia, and burn injury, invoke a milieu of systemic metabolic and inflammatory derangements that ultimately results in increased energy expenditure leading to fat and lean mass catabolism. Burn injuries present a unique clinical challenge given the magnitude and duration of the hypermetabolic response compared with other forms of critical illness, which drastically increase the risk of morbidity and mortality. Skeletal muscle metabolism is particularly altered as a consequence of burn-induced hypermetabolism, as it primarily provides a main source of fuel in support of wound healing.
View Article and Find Full Text PDFSevere burns remain a leading cause of death and disability worldwide. Despite advances in patient care, the excessive and uncontrolled hypermetabolic stress response induced by this trauma inevitably affects every organ system causing substantial morbidity and mortality. Recent evidence suggests interleukin-6 (IL-6) is a major culprit underlying post-burn hypermetabolism.
View Article and Find Full Text PDFBone marrow stromal cells (BMSCs) play pivotal roles in tissue maintenance and regeneration. Their origins, however, remain incompletely understood. Here we identify rare LNGFR cells in human fetal and regenerative bone marrow that co-express endothelial and stromal markers.
View Article and Find Full Text PDFSevere burns are characterized by the magnitude and duration of the hypermetabolic response thereafter, and demarcated by the loss of lean body mass and catabolism of fat stores. The aim of the present study was to delineate the temporal and location-specific physiological changes to adipose depots and downstream consequences post-burn in a murine model of thermal injury. C57BL/6 mice were subjected to a 30% total body surface area burn and body mass, food intake, and tissue mass were monitored for various time points up until 60 days postinjury.
View Article and Find Full Text PDFObjective: Generic psychosocial screening tools may not reflect the unique symptom profile of brain tumour patients (BTPs). The aim was to adapt the problem list of the distress thermometer (DT) for BTPs.
Methods: First, items of low relevance for BTPs were identified on basis of retrospective analyses.
Objective: Browning, the conversion of white adipose tissue (WAT) to a beige phenotype, has gained interest as a strategy to induce weight loss and improve insulin resistance in metabolic disorders. However, for hypermetabolic conditions stemming from burn trauma or cancer cachexia, browning is thought to contribute to energy wasting and supraphysiological nutritional requirements. Metformin's impact on this phenomenon and underlying mechanisms have not been explored.
View Article and Find Full Text PDFin tissue engineering, endochondral ossification (EO) is often replicated by chondrogenically differentiating mesenchymal stromal cells (MSCs) in vitro and achieving bone formation through in vivo implantation. The resulting marrow-containing bone constructs are promising as a treatment for bone defects. However, limited bone formation capacity has prevented them from reaching their full potential.
View Article and Find Full Text PDFExtensive burn injuries promote an increase in the lipolysis of white adipose tissue (WAT), a complication that enhances postburn hypermetabolism contributing to hyperlipidemia and hepatic steatosis. The systemic increase of free fatty acids (FFAs) due to burn-induced lipolysis and subsequent organ fatty infiltration may culminate in multiple organ dysfunction and, ultimately, death. Thus, reducing WAT lipolysis to diminish the mobilization of FFAs may render an effective means to improve outcomes postburn.
View Article and Find Full Text PDFKey Points: Mice are commonly housed at room temperatures below their thermoneutral zone meaning they are exposed to chronic thermal stress. Endurance exercise induces browning and mitochondrial biogenesis in white adipose tissue of rodents, but there are conflicting reports of this phenomenon in humans. We hypothesized that the ambient room temperature at which mice are housed could partially explain these discrepant reports between humans and rodents.
View Article and Find Full Text PDFEndochondral ossification (EO) is the process by which the long bones of the body form and has proven to be a promising method in tissue engineering for achieving cell-mediated bone formation. The present review centred on state-of-the-art research pertaining to mesenchymal stem cells (MSCs)-mediated endochondral bone formation, focusing on the role of donor cells, extracellular matrix and host immune cells during tissue-engineered bone formation. Possible research avenues to improve graft outcome and bone output were highlighted, as well as emerging research that, when applied to tissue-engineered bone grafts, offers new promise for improving the likelihood of such grafts transition from bench to bedside.
View Article and Find Full Text PDFVarious endocrine factors contribute to cold-induced white adipose tissue (WAT) browning, but glucagon has largely been ignored. The purpose of the current investigation was to determine if glucagon was required for the effects of cold on WAT browning. Utilizing whole-body glucagon receptor knockout (Gcgr) mice and their wild-type (WT) littermate controls, we examined the response of inguinal WAT (iWAT) and interscapular brown adipose tissue (BAT) to an acute (48 h) cold stress or challenge with the β3-adrenergic agonist CL316,243.
View Article and Find Full Text PDFKey Points: Mammals defend against cold-induced reductions in body temperature through both shivering and non-shivering thermogenesis. The activation of non-shivering thermogenesis is primarily driven by uncoupling protein-1 in brown adipose tissue and to a lesser degree by the browning of white adipose tissue. Endurance exercise has also been shown to increase markers of white adipose tissue browning.
View Article and Find Full Text PDF