Publications by authors named "Knut Teigen"

Vesicular monoamine transporter 2 (VMAT2) is responsible for packing monoamine neurotransmitters into synaptic vesicles for storage and subsequent neurotransmission. VMAT2 inhibitors are approved for symptomatic treatment of tardive dyskinesia and Huntington's chorea, but despite being much-studied inhibitors their exact binding site and mechanism behind binding and inhibition of monoamine transport are not known. Here we report the identification of several approved drugs, notably β2-adrenergic agonists salmeterol, vilanterol and formoterol, β2-adrenergic antagonist carvedilol and the atypical antipsychotic ziprasidone as inhibitors of rat VMAT2.

View Article and Find Full Text PDF

Mutant superoxide dismutase 1 (SOD1) may form cyclic structures due to its greater instability from aberrant demetallization and oxidation of cysteine bonds. This cyclic structure may allow SOD1 to form ion channels on membranes such as the mitochondrial membrane, causing imbalances in the concentration of intracellular ions as a potential mechanism for the progressive neuron death involved in amyotrophic lateral sclerosis (ALS). Using docking programs within modeling software, models of mutant SOD1 dimers and eventually ring oligomers were constructed based on known descriptions of such structures in addition to information on the orientation of the models associated with a membrane.

View Article and Find Full Text PDF

Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of dopamine (DA) and other catecholamines, and its dysfunction leads to DA deficiency and parkinsonisms. Inhibition by catecholamines and reactivation by S40 phosphorylation are key regulatory mechanisms of TH activity and conformational stability. We used Cryo-EM to determine the structures of full-length human TH without and with DA, and the structure of S40 phosphorylated TH, complemented with biophysical and biochemical characterizations and molecular dynamics simulations.

View Article and Find Full Text PDF

Clinically, corticosteroids are used mainly for their immune-modulatory properties but are also known to influence mood. Despite evidence of a role in regulating tryptophan hydroxylases (TPH), key enzymes in serotonin biosynthesis, a direct action of corticosteroids on these enzymes has not been systematically investigated. Corticosteroid effects on TPHs were tested using an assay.

View Article and Find Full Text PDF

The driving forces and conformational pathways leading to amphitropic protein-membrane binding and in some cases also to protein misfolding and aggregation is the subject of intensive research. In this study, a chimeric polypeptide, A-Cage-C, derived from α-Lactalbumin is investigated with the aim of elucidating conformational changes promoting interaction with bilayers. From previous studies, it is known that A-Cage-C causes membrane leakages associated with the sporadic formation of amorphous aggregates on solid-supported bilayers.

View Article and Find Full Text PDF

Serotonin (5-HT) is a hormone and neurotransmitter that modulates neural activity as well as a wide range of other physiological processes including cardiovascular function, bowel motility, and platelet aggregation. 5-HT synthesis is catalyzed by tryptophan hydroxylase (TPH) which exists as two distinct isoforms; TPH1 and TPH2, which are responsible for peripheral and central 5-HT, respectively. Due to the implication of 5-HT in a number of pathologies, including depression, anxiety, autism, sexual dysfunction, irritable bowel syndrome, inflammatory bowel disease, and carcinoid syndrome, there has been a growing interest in finding modulators of these enzymes in recent years.

View Article and Find Full Text PDF

Tyrosine hydroxylase (TH) catalyses the (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4)-dependent conversion of L-tyrosine to L-3,4-dihydroxyphenylalanine (L-Dopa), which is the rate-limiting step in the synthesis of dopamine and other catecholamine neurotransmitters and hormones. Dysfunctional mutant TH causes tyrosine hydroxylase deficiency (THD), characterized by symptoms ranging from mild l-Dopa responsive dystonia to severe neuropathy. THD-associated mutations often present misfolding and a propensity to aggregate, characteristics that can also be manifested by dysregulated wild-type TH.

View Article and Find Full Text PDF

Tryptophan hydroxylase 1 (TPH1) catalyzes serotonin synthesis in peripheral tissues. Selective TPH1 inhibitors may be useful for treating disorders related to serotonin dysregulation. Screening using a thermal shift assay for TPH1 binders yielded Compound (2-(4-methylphenyl)-1,2-benzisothiazol-3(2)-one), which showed high potency (50% inhibition at 98 ± 30 nM) and selectivity for inhibiting TPH over related aromatic amino acid hydroxylases in enzyme activity assays.

View Article and Find Full Text PDF

The metabolic network of sphingolipids plays important roles in cancer biology. Prominent sphingolipids include ceramides and sphingosine-1-phosphate that regulate multiple aspects of growth, apoptosis, and cellular signaling. Although a significant number of enzymatic regulators of the sphingolipid pathway have been described in detail, many remained poorly characterized.

View Article and Find Full Text PDF

Chromatin post-translational modifications are thought to be important for epigenetic effects on gene expression. Methylation of histone N-terminal tail lysine residues constitutes one of many such modifications, executed by families of histone lysine methyltransferase (HKMTase). One such protein is ASHH2 from the flowering plant Arabidopsis thaliana, equipped with the interaction domain, CW, and the HKMTase domain, SET.

View Article and Find Full Text PDF

Hassallidins are cyclic glycolipopeptides produced by cyanobacteria and other prokaryotes. The hassallidin structure consists of a peptide ring of eight amino acids where a fatty acid chain, additional amino acids, and sugar moieties are attached. Hassallidins show antifungal activity against several opportunistic human pathogenic fungi, but does not harbor antibacterial effects.

View Article and Find Full Text PDF

Purpose: To clinically and genetically characterise a second family with dominant ARL3-related retinitis pigmentosa due to a specific ARL3 missense variant, p.(Tyr90Cys).

Methods: Clinical examination included optical coherence tomography, electroretinography, and ultra-wide field retinal imaging with autofluorescence.

View Article and Find Full Text PDF

The ER resident chaperone molecule GRP78 has been shown to translocate to the cell surface where it associates with Cripto and signals cell growth, playing a still partially understood role in tumorigenesis. Consequently, a better understanding of GRP78 topology and structure at the surface of cancer cells represents an important step in the development of a new class of therapeutics. Here, we used a set of programs for creation of a complex containing GRP78 and Cripto proteins.

View Article and Find Full Text PDF

Mammalian phenylalanine hydroxylase (PAH) is a key enzyme in l-phenylalanine (l-Phe) metabolism and is active as a homotetramer. Biochemical and biophysical work has demonstrated that it cycles between two states with a variably low and a high activity, and that the substrate l-Phe is the key player in this transition. X-ray structures of the catalytic domain have shown mobility of a partially intrinsically disordered Tyr-loop to the active site in the presence of l-Phe.

View Article and Find Full Text PDF

In this manuscript we expand significantly on our earlier communication by investigating the bilayer self-assembly of eight different types of phospholipids in unbiased molecular dynamics (MD) simulations using three widely used all-atom lipid force fields. Irrespective of the underlying force field, the lipids are shown to spontaneously form stable lamellar bilayer structures within 1 microsecond, the majority of which display properties in satisfactory agreement with the experimental data. The lipids self-assemble via the same general mechanism, though at formation rates that differ both between lipid types, force fields and even repeats on the same lipid/force field combination.

View Article and Find Full Text PDF

The aromatic amino acid hydroxylase (AAAH) enzyme family includes phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH) and the tryptophan hydroxylases (TPH1 and TPH2). All four members of the AAAH family require iron, dioxygen and the cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) to hydroxylate their respective substrates. The AAAHs are involved in severe diseases; whereas polymorphisms and variants in the TPH genes are associated to neuropsychiatric disorders, mutations in PAH and TH are responsible for the autosomal recessive disorders phenylketonuria (PKU) and TH deficiency (THD), respectively.

View Article and Find Full Text PDF

Variants in the gene encoding the enzyme glutamic acid decarboxylase like 1 (GADL1) have been associated with response to lithium therapy. Both GADL1 and the related enzyme cysteine sulfinic acid decarboxylase (CSAD) have been proposed to be involved in the pyridoxal-5'-phosphate (PLP)-dependent biosynthesis of taurine. In the present study, we compared the catalytic properties, inhibitor sensitivity and expression profiles of GADL1 and CSAD in brain tissue.

View Article and Find Full Text PDF

Pharmacological chaperones are small compounds that correct the folding of mutant proteins, and represent a promising therapeutic strategy for misfolding diseases. We have performed a screening of 10,000 compounds searching for pharmacological chaperones of tyrosine hydroxylase (TH), the tetrahydrobiopterin (BH4)-dependent enzyme that catalyzes the rate-limiting step in the synthesis of catecholamines. A large number of compounds bound to human TH, isoform 1 (hTH1), but only twelve significantly protected wild-type (hTH1-wt) and mutant TH-R233H (hTH1-p.

View Article and Find Full Text PDF

This communication reports the first example of spontaneous lipid bilayer formation in unbiased all-atom molecular dynamics (MD) simulations. Using two different lipid force fields we show simulations started from random mixtures of lipids and water in which four different types of phospholipids self-assemble into organized bilayers in under 1 microsecond.

View Article and Find Full Text PDF

The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated.

View Article and Find Full Text PDF

Analogs of the cyclic nucleotides cAMP and cGMP have been extensively used to mimic or modulate cellular events mediated by protein kinase A (PKA), Exchange protein directly activated by cAMP (Epac), or protein kinase G (PKG). We report here that some of the most commonly used cyclic nucleotide analogs inhibit transmembrane transport mediated by the liver specific organic anion transporter peptides OATP1B1 and OATP1B3, unrelated to actions on Epac, PKA or PKG. Several cAMP analogs, particularly with 8-pCPT-substitution, inhibited nodularin (Nod) induced primary rat hepatocyte apoptosis.

View Article and Find Full Text PDF

Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of catecholamine neurotransmitters, and a reduction in TH activity is associated with several neurological diseases. Human TH is regulated, among other mechanisms, by Ser19-phosphorylation-dependent interaction with 14-3-3 proteins. The N-terminal sequence (residues 1-43), which corresponds to an extension to the TH regulatory domain, also interacts with negatively charged membranes.

View Article and Find Full Text PDF

Inhibition of ClpB, the bacterial representative of the heat-shock protein 100 family that is associated with virulence of several pathogens, could be an effective strategy to develop new antimicrobial agents. Using a high-throughput screening method, we have identified several compounds that bind to different conformations of ClpB and analyzed their effect on the ATPase and chaperone activities of the protein. Two of them inhibit these functional properties as well as the growth of Gram negative bacteria (E.

View Article and Find Full Text PDF

Sorbitol dehydrogenase inhibitors have been found to prevent, or alleviate, various secondary complications of diabetes mellitus. In the present study, the effects of nucleosides and nucleotides on the rate of sorbitol oxidation catalyzed by the sheep liver enzyme were studied by steady-state kinetics at pH 7.4.

View Article and Find Full Text PDF