Publications by authors named "Knut Steffensen"

Macrophages regulate essential aspects of innate immunity against pathogens. In response to microbial components, macrophages activate primary and secondary inflammatory gene programs crucial for host defense. The liver X receptors (LXRα, LXRβ) are ligand-dependent nuclear receptors that direct gene expression important for cholesterol metabolism and inflammation, but little is known about the individual roles of LXRα and LXRβ in antimicrobial responses.

View Article and Find Full Text PDF

Liver X receptors (LXRs) are nuclear transcription factors important in the regulation of cholesterol transport, and glucose and fatty acid metabolism. The antiproliferative role of LXRs has been studied in a variety of malignancies and may represent a therapeutic opportunity in cancers lacking targeted therapies, such as triple-negative breast cancer. In this study, we investigated the impact of LXR agonists alone and in combination with carboplatin in preclinical models of breast cancer.

View Article and Find Full Text PDF

Background: Sterol O-acyltransferase 2 (Soat2) encodes acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2), which synthesizes cholesteryl esters in hepatocytes and enterocytes fated either to storage or to secretion into nascent triglyceride-rich lipoproteins.

Objectives: We aimed to unravel the molecular mechanisms leading to reduced hepatic steatosis when Soat2 is depleted in mice.

Methods: Soat2 and wild-type mice were fed a high-fat, a high-carbohydrate, or a chow diet, and parameters of lipid and glucose metabolism were assessed.

View Article and Find Full Text PDF

The initiation and progression of autoimmune disorders such as multiple sclerosis (MS) is linked to aberrant cholesterol metabolism and overt inflammation. Liver X receptors (LXR) are nuclear receptors that function at the crossroads of cholesterol metabolism and immunity, and their activation is considered a promising therapeutic strategy to attenuate autoimmunity. However, despite clear functional heterogeneity and cell-specific expression profiles, the impact of the individual LXR isoforms on autoimmunity remains poorly understood.

View Article and Find Full Text PDF

Liver X receptors (LXRs) and their ligands are potent regulators of midbrain dopaminergic (mDA) neurogenesis and differentiation. However, the molecular mechanisms by which LXRs control these functions remain to be elucidated. Here, we perform a combined transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analysis of midbrain cells after LXR activation, followed by bioinformatic analysis to elucidate the transcriptional networks controlling mDA neurogenesis.

View Article and Find Full Text PDF

Background And Aims: Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver-humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabolism.

View Article and Find Full Text PDF

Until three decades, ago 3,5-diiodothyronine (3,5-T) and 3,3'-diiodothyronine (3,3'-T) were considered products of thyroid hormone catabolism without biological activity. Some metabolic effects have been described in rodents, but the physiological relevance in humans and the mechanisms of action are unknown. Aim of this work was to investigate the role and the mechanisms of action of 3,5-T and 3,3'-T in the regulation of metabolic homeostasis in human liver.

View Article and Find Full Text PDF

Dysfunction of the blood-brain barrier (BBB) contributes significantly to the pathogenesis of several neuroinflammatory diseases, including multiple sclerosis (MS). Potential players that regulate BBB function are the liver X receptors (LXRs), which are ligand activated transcription factors comprising two isoforms, LXRα, and LXRβ. However, the role of LXRα and LXRβ in regulating BBB (dys)function during neuroinflammation remains unclear, as well as their individual involvement.

View Article and Find Full Text PDF

Dendritic cells (DCs) initiate adaptive immune responses after their migration to secondary lymphoid organs. The LXR ligands/oxysterols and the RXR ligand 9-cis Retinoic Acid (9-cis RA) were shown to dampen DC migration to lymphoid organs through the inhibition of CCR7 expression. We performed transcriptomics of DCs undergoing maturation in the presence of the LXR ligand 22R-Hydroxycholesterol (22R-HC).

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a very common indication for liver transplantation. How fat-rich diets promote progression from fatty liver to more damaging inflammatory and fibrotic stages is poorly understood. Here, we show that disrupting phosphorylation at Ser196 (S196A) in the liver X receptor alpha (LXRα, NR1H3) retards NAFLD progression in mice on a high-fat-high-cholesterol diet.

View Article and Find Full Text PDF

Introduction: Liver X receptors (LXRs) are nuclear receptors that function as cholesterol sensors and regulate cholesterol homeostasis. High cholesterol has been recognized as a risk factor in asthma; however, the mechanism of this linkage is not known.

Methods: To explore the importance of cholesterol homeostasis for asthma, we investigated the contribution of LXR activity in an ovalbumin- and a house dust mite-driven eosinophilic asthma mouse model.

View Article and Find Full Text PDF

IL-18 is a member of the IL-1 family involved in innate immunity and inflammation. Deregulated levels of IL-18 are involved in the pathogenesis of multiple disorders including inflammatory and metabolic diseases, yet relatively little is known regarding its regulation. Liver X receptors or LXRs are key modulators of macrophage cholesterol homeostasis and immune responses.

View Article and Find Full Text PDF
Article Synopsis
  • Liver X receptors (LXRs) play key roles in regulating cholesterol, fatty acids, glucose metabolism, and immune responses, with potential applications in treating metabolic and inflammatory diseases.
  • This review discusses the discovery, effects, and mechanisms of LXR ligands in cancer models, along with future research directions in cancer therapeutics.
  • While targeting LXRs offers promising cancer treatment options, challenges include understanding their specific mechanisms and developing optimized ligands for clinical use.
View Article and Find Full Text PDF

Aims/hypothesis: Diabetic cardiomyopathy is a myocardial disease triggered by impaired insulin signalling, increased fatty acid uptake and diminished glucose utilisation. Liver X receptors (LXRs) are key transcriptional regulators of metabolic homeostasis. However, their effect in the diabetic heart is largely unknown.

View Article and Find Full Text PDF

Nuclear hormone receptor liver X receptor-alpha (LXRα) has a vital role in cholesterol homeostasis and is reported to have a role in adipose function and obesity although this is controversial. Conversely, mesenchymal stem cells (MSCs) are suggested to be a major source of adipocyte generation. Accordingly, we examined the role of LXRα in adipogenesis of MSCs.

View Article and Find Full Text PDF

Glycolytic and lipogenic inhibitors have proven unsuccessful in cancer treatment strategies. In this issue of Cancer Cell, Flaveny and colleagues target the liver-X-receptor with an inverse agonist and show that key glycolytic and lipogenic genes are suppressed, leading to apoptosis of tumor cells without an effect on non-malignant cells.

View Article and Find Full Text PDF

Liver X receptor (LXR)α and LXRβ play key roles in hepatic de novo lipogenesis through their regulation of lipogenic genes, including sterol regulatory element-binding protein (SREBP)-1c and carbohydrate responsive element-binding protein (ChREBP). LXRs activate lipogenic gene transcription in response to feeding, which is believed to be mediated by insulin. We have previously shown that LXRs are targets for glucose-hexosamine-derived O-linked β-N-acetylglucosamine (O-GlcNAc) modification enhancing their ability to regulate SREBP-1c promoter activity in vitro.

View Article and Find Full Text PDF

Cholestenoic acids are formed as intermediates in metabolism of cholesterol to bile acids, and the biosynthetic enzymes that generate cholestenoic acids are expressed in the mammalian CNS. Here, we evaluated the cholestenoic acid profile of mammalian cerebrospinal fluid (CSF) and determined that specific cholestenoic acids activate the liver X receptors (LXRs), enhance islet-1 expression in zebrafish, and increase the number of oculomotor neurons in the developing mouse in vitro and in vivo. While 3β,7α-dihydroxycholest-5-en-26-oic acid (3β,7α-diHCA) promoted motor neuron survival in an LXR-dependent manner, 3β-hydroxy-7-oxocholest-5-en-26-oic acid (3βH,7O-CA) promoted maturation of precursors into islet-1+ cells.

View Article and Find Full Text PDF

Reversing the escalating rate of obesity requires increased knowledge of the molecular mechanisms controlling energy balance. Liver X receptors (LXRs) and thyroid hormone receptors (TRs) are key physiological regulators of energetic metabolism. Analysing interactions between these receptors in the periphery has led to a better understanding of the mechanisms involved in metabolic diseases.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is difficult to detect early and is often resistant to standard chemotherapeutic options, contributing to extremely poor disease outcomes. Members of the nuclear receptor superfamily carry out essential biological functions such as hormone signaling and are successfully targeted in the treatment of endocrine-related malignancies. Liver X receptors (LXRs) are nuclear receptors that regulate cholesterol homeostasis, lipid metabolism, and inflammation, and LXR agonists have been developed to regulate LXR function in these processes.

View Article and Find Full Text PDF

Oxysterols are involved in maintaining cellular cholesterol levels. Recently, oxysterols have been demonstrated to modulate the function of immune cells and tumor growth. These effects can be dependent on the activation of the oxysterol-binding liver X receptors (LXRs) or, as recently demonstrated for T and B cells, DCs and neutrophils, can be independent of LXR activation.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used two types of mice (wild-type and LXRα/β double knockout) and administered a specific antisense oligonucleotide (ASO6) to suppress ACAT2 activity while feeding them a high-fat diet.
  • * Results showed that inhibiting ACAT2 led to decreased liver cholesteryl esters and increased ABCA1 protein, influencing HDL lipid composition and suggesting a novel pathway for liver involvement in HDL metabolism.
View Article and Find Full Text PDF

The liver X receptors (LXR)α and LXRβ are transcription factors belonging to the nuclear receptor family, which play a central role in metabolic homeostasis, being master regulators of key target genes in the glucose and lipid pathways. Wild-type (WT), LXRα(-/-), and LXRβ(-/-) mice were fed a chow diet with (treated) or without (control) the synthetic dual LXR agonist GW3965 for 5 wk. GW3965 raised intrahepatic triglyceride (TG) level but, surprisingly, reduced serum TG level through the activation of serum lipase activity.

View Article and Find Full Text PDF
Article Synopsis
  • Liver X receptor (LXR) activation leads to increased triglyceride (TG) levels in the liver, while estradiol-17β (E2) is shown to decrease these levels through its interaction with estrogen receptor alpha (ERα).
  • E2 reduces SREBP-1 expression and TG accumulation linked to LXR activation, but this effect relies on the presence of ERα, as shown in knockout mouse models.
  • The study identifies phloretin, a phytoestrogen with no estrogenic activity, as an ER ligand that can similarly lower SREBP-1 levels and TG accumulation without enhancing traditional ER functions.
View Article and Find Full Text PDF

We investigated whether: (1) liver X receptor (LXR)-driven induction of high-density lipoprotein cholesterol (HDL-C) and other LXR-mediated effects on cholesterol metabolism depend on intestinal cholesterol absorption; and (2) combined treatment with the LXR agonist GW3965 and the cholesterol absorption inhibitor ezetimibe results in synergistic effects on cholesterol metabolism that could be beneficial for treatment of atherosclerosis. Mice were fed 0.2 % cholesterol and treated with GW3965+ezetimibe, GW3965 or ezetimibe.

View Article and Find Full Text PDF