The spatial and temporal distribution of forage quality is among the most central factors affecting herbivore habitat selection. Yet, for high latitude areas, forage quantity has been found to be more important than quality. Studies on large ungulate foraging patterns are faced with methodological challenges in both assessing animal movements at the scale of forage distribution, and in assessing forage quality with relevant metrics.
View Article and Find Full Text PDFFor long-lived organisms, the fitness value of survival is greater than that of current reproduction. Asymmetric fitness rewards suggest that organisms inhabiting unpredictable environments should adopt a risk-sensitive life history, predicting that it is adaptive to allocate resources to increase their own body reserves at the expense of reproduction. We tested this using data from reindeer populations inhabiting contrasting environments and using winter body mass development as a proxy for the combined effect of winter severity and density dependence.
View Article and Find Full Text PDFThe Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers.
View Article and Find Full Text PDFOrganisms should adopt a risk-sensitive reproductive allocation when summer reproductive allocation competes with survival in the coming winter. This trade off is shown through autumn female body mass, which acts as an insurance against unpredictable winter environmental conditions. We tested this hypothesis on female reindeer in a population that has experienced a time period of dramatic increase in abundance.
View Article and Find Full Text PDFWhen reproduction competes with the amount of resources available for survival during an unpredictable nonbreeding season, individuals should adopt a risk-sensitive regulation of their reproductive allocation. We tested this hypothesis on female reindeer (Rangifer tarandus), which face a trade-off between reproduction and acquisition of body reserves during spring and summer, with autumn body mass functioning as insurance against stochastic winter climatic severity. The study was conducted in a population consisting of two herds: one that received supplementary winter feeding for four years while the other utilized natural pastures.
View Article and Find Full Text PDF