Publications by authors named "Knut Aasmundtveit"

The rapid evolution of multifunctional electronics necessitates interconnection technologies appropriate for large dies with high-density and/or ultrafine pitch input/output pins. Existing technologies face numerous challenges, including demands for bonding equipment that can deliver extremely high force as well as thermo-mechanical stresses induced in the assembled packages due to mismatched thermal expansion of materials involved. This study proposes an approach to compliant interconnects comprising single micrometer-sized metal-coated polymer spheres, being joined to mating electrodes by sintering of Ag nano ink at low temperature (140 °C) and low pressure (∼15 mN/particle).

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) can be locally grown on custom-designed CMOS microheaters by a thermal chemical vapour deposition (CVD) process to utilize the sensing capabilities of CNTs in emerging micro- and nanotechnology applications. For such a direct CMOS-CNT integration, a key requirement is the development of necessary post-processing steps on CMOS chips for fabricating CMOS-MEMS polysilicon heaters that can locally generate the required CNT synthesis temperatures (~650-900 °C). In our post-CMOS processing, a subtractive fabrication technique is used for micromachining the polysilicon heaters, where the passivation layers in CMOS are used as masks to protect the electronics.

View Article and Find Full Text PDF

Materials providing heat dissipation and electrical insulation are required for many electronic and medical devices. Polymer composites with hexagonal boron nitride (hBN) may fulfil such requirements. The focus of this study is to compare composites with hBN fabricated by injection moulding (IM), powder bed fusion (PBF) and casting.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) can be grown locally on custom-designed CMOS microstructures to use them as a sensing material for manufacturing low-cost gas sensors, where CMOS readout circuits are directly integrated. Such a local CNT synthesis process using thermal chemical vapor deposition (CVD) requires temperatures near 900 °C, which is destructive for CMOS circuits. Therefore, it is necessary to ensure a high thermal gradient around the CNT growth structures to maintain CMOS-compatible temperature (below 300 °C) on the bulk part of the chip, where readout circuits are placed.

View Article and Find Full Text PDF

A combined humidity and temperature sensor was packaged by vacuum casting onto three different types of textiles; cotton, nylon and a waterproof fabric. This was done in order to integrate the sensor in a jacket in a soft and reliable way without changing the sensor performance. A membrane was custom made and integrated into the device to protect the sensor from the environment.

View Article and Find Full Text PDF

An accelerometer-based heart monitoring system has been developed for real-time evaluation of heart wall movement. In this paper, assembly and fabrication of an improved device is presented along with system characterization and test data from an animal experiment. The new device is smaller and has simplified the implantation procedure compared to earlier prototypes.

View Article and Find Full Text PDF

Local synthesis and direct integration of carbon nanotubes (CNTs) into microsystems is a promising method for producing CNT-based devices in a single step, low-cost, and wafer-level, CMOS/MEMS-compatible process. In this report, the structure of the locally grown CNTs are studied by transmission imaging in scanning electron microscopy-S(T)EM. The characterization is performed directly on the microsystem, without any post-synthesis processing required.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) have been directly grown onto a silicon microsystem by a local synthesis method. This method has potential for wafer-level complimentary metal-oxide-semiconductor (CMOS) transistor-compatible integration of CNTs into more complex Si microsystems; enabling, e.g.

View Article and Find Full Text PDF

In coronary artery bypass grafting there is a risk of graft occlusion which may result in myocardial infarction. A three-axis acceleration sensor may give additional information about heart function during surgery and the first postoperative days. This paper describes the assembly and packaging of a three-axis micro acceleration sensor for use in clinical trials.

View Article and Find Full Text PDF