Reconstitution of ribosomes in vitro from individual ribosomal proteins provides a powerful tool for understanding the ribosome assembly process including the sequential incorporation of ribosomal proteins. However, conventional assembly methods require high-salt conditions for efficient ribosome assembly. In this study, we reconstituted 30S ribosomal subunits from individually purified ribosomal proteins in the presence of ribosome biogenesis factors.
View Article and Find Full Text PDFThe assembly of ribosomal subunits is an essential prerequisite for protein biosynthesis in all domains of life. Although biochemical and biophysical approaches have advanced our understanding of ribosome assembly, our mechanistic comprehension of this process is still limited. Here, we perform an in vitro reconstitution of the Escherichia coli 50S ribosomal subunit.
View Article and Find Full Text PDFProtein biosynthesis is inherently coupled to cotranslational protein folding. Folding of the nascent chain already occurs during synthesis and is mediated by spatial constraints imposed by the ribosomal exit tunnel as well as self-interactions. The polypeptide's vectorial emergence from the ribosomal tunnel establishes the possible folding pathways leading to its native tertiary structure.
View Article and Find Full Text PDFIt is general wisdom that termination of bacterial protein synthesis is obligatorily followed by recycling governed by the factors ribosomal recycling factor (RRF), EF-G, and IF3, where the ribosome dissociates into its subunits. In contrast, a recently described 70S-scanning mode of initiation holds that after termination, scanning of 70S can be triggered by fMet-tRNA to the initiation site of a downstream cistron. Here, we analyze the apparent conflict.
View Article and Find Full Text PDFMany antibiotics target the ribosome and interfere with its translation cycle. Since translation is the source of all cellular proteins including ribosomal proteins, protein synthesis and ribosome assembly are interdependent. As a consequence, the activity of translation inhibitors might indirectly cause defective ribosome assembly.
View Article and Find Full Text PDFAccording to the standard model of bacterial translation initiation, the small ribosomal 30S subunit binds to the initiation site of an mRNA with the help of three initiation factors (IF1-IF3). Here, we describe a novel type of initiation termed "70S-scanning initiation," where the 70S ribosome does not necessarily dissociate after translation of a cistron, but rather scans to the initiation site of the downstream cistron. We detailed the mechanism of 70S-scanning initiation by designing unique monocistronic and polycistronic mRNAs harboring translation reporters, and by reconstituting systems to characterize each distinct mode of initiation.
View Article and Find Full Text PDFKey components of the translational apparatus, i.e. ribosomes, elongation factor EF-Tu and most aminoacyl-tRNA synthetases, are stereoselective and prevent incorporation of d-amino acids (d-aa) into polypeptides.
View Article and Find Full Text PDFThe ribosome translates the sequence of codons of an mRNA into the corresponding sequence of amino acids as it moves along the mRNA with a codon-step width of about 10 Å. The movement of the million-dalton complex ribosome is triggered by the universal elongation factor G (EF2 in archaea and eukaryotes) and is termed translocation. Unraveling the molecular details of translocation is one of the most challenging tasks of current ribosome research.
View Article and Find Full Text PDFRelease factors (RFs) govern the termination phase of protein synthesis. Human mitochondria harbor four different members of the class 1 RF family: RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1 factor is widely distributed in bacteria and organelles and has the peculiar feature in human mitochondria to be part of the ribosome as a ribosomal protein of the large subunit.
View Article and Find Full Text PDFMg(2+) and K(+) are the prevalent di- and monovalent cations inside the cells in all three domains, playing a dominant role in structure and function of biological macromolecules. Ribosomes bind a substantial fraction of total Mg(2+) and K(+) cations. In this issue of the Journal of Bacteriology, Akanuma and coworkers (G.
View Article and Find Full Text PDFOpen Biochem J
September 2014
We have demonstrated previously that the E-site specific protein RPL36AL present in human ribosomes can be crosslinked with the CCA-end of a P-tRNA in situ. Here we report the following: (i) We modeled RPL36AL into the structure of the archaeal ortholog RPL44E extracted from the known X-ray structure of the 50S subunit of Haloarcula marismortui. Superimposing the obtained RPL36AL structure with that of P/E tRNA observed in eukaryotic 80S ribosomes suggested that RPL36AL might in addition to its CCA neighbourhood interact with the inner site of the tRNA elbow similar to an interaction pattern known from tRNA•synthetase pairs.
View Article and Find Full Text PDFDuring translation, elongation factor G (EF-G) catalyzes the translocation of tRNA2-mRNA inside the ribosome. Translocation is coupled to a cycle of conformational rearrangements of the ribosomal machinery, and how EF-G initiates translocation remains unresolved. Here we performed systematic mutagenesis of Escherichia coli EF-G and analyzed inhibitory single-site mutants of EF-G that preserved pretranslocation (Pre)-state ribosomes with tRNAs in A/P and P/E sites (Pre-EF-G).
View Article and Find Full Text PDFThe extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome.
View Article and Find Full Text PDFRibosomes translate the codon sequence of an mRNA into the amino acid sequence of the corresponding protein. One of the most crucial events is the translocation reaction, which involves movement of both the mRNA and the attached tRNAs by one codon length and is catalysed by the GTPase elongation factor G (EF-G). Interestingly, recent studies have identified a structurally related GTPase, EF4, that catalyses movement of the tRNA2-mRNA complex in the opposite direction when the ribosome stalls, which is known as back-translocation.
View Article and Find Full Text PDFTranslational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear.
View Article and Find Full Text PDFThe tmRNA/SmpB system, which is almost universal in bacteria, rescues bacterial ribosomes stalled at the end of non-stop mRNAs (mRNAs lacking a stop codon). In addition, a few bacteria, including Escherichia coli, have developed a second two-component system as reported by Chadani et al. (2012).
View Article and Find Full Text PDFPreviously we have shown that the CCA end of a P-tRNA can be crosslinked with the RPL36AL protein of the large subunit of mammalian ribosomes; it belongs to the L44e protein family present in all eukaryotic and archaeal ribosomes. Here we confirm and extend this finding and demonstrate that: 1) this crosslink is specific for a tRNA at the P/E hybrid site, as a tRNA in all other tRNA positions of pre-translocational ribosomes could not be crosslinked with a ribosomal protein, 2) the crosslink was formed most efficiently with C74 and C75 of P/E-tRNA, but could also connect the ultimate A of this tRNA with Lys53 of protein RPL36AL, 3) this protein contains seven monomethylated residues (three lysyl and three arginyl residues, as well as glutaminyl residue 51), 4) Q51 is part of a conserved GGQ motif in the L44e proteins in eukaryotic 80S ribosomes that is identical to the universally conserved motif of release factors implicated in promoting peptidyl-tRNA hydrolysis, and 5) the large number of modifications, in which some of the residues were methylated to about 50 %, might indicate that protein RPL36AL is a preferential target for regulation.
View Article and Find Full Text PDFThe YbeB (DUF143) family of uncharacterized proteins is encoded by almost all bacterial and eukaryotic genomes but not archaea. While they have been shown to be associated with ribosomes, their molecular function remains unclear. Here we show that YbeB is a ribosomal silencing factor (RsfA) in the stationary growth phase and during the transition from rich to poor media.
View Article and Find Full Text PDFBacterial ribosomes stalled at the 3' end of malfunctioning messenger RNAs can be rescued by transfer-messenger RNA (tmRNA)-mediated trans-translation. The SmpB protein forms a complex with the tmRNA, and the transfer-RNA-like domain (TLD) of the tmRNA then enters the A site of the ribosome. Subsequently, the TLD-SmpB module is translocated to the P site, a process that is facilitated by the elongation factor EF-G, and translation is switched to the mRNA-like domain (MLD) of the tmRNA.
View Article and Find Full Text PDFWhen elongation factor G (EF-G) binds to the ribosome, it first makes contact with the C-terminal domain (CTD) of L12 before interacting with the N-terminal domain (NTD) of L11. Here we have identified a universally conserved residue, Pro22 of L11, that functions as a proline switch (PS22), as well as the corresponding center of peptidyl-prolyl cis-trans isomerase (PPIase) activity on EF-G that drives the cis-trans isomerization of PS22. Only the cis configuration of PS22 allows direct contact between the L11 NTD and the L12 CTD.
View Article and Find Full Text PDF