J Adv Model Earth Syst
June 2022
The NASA Goddard Earth Observing System (GEOS) Composition Forecast (GEOS-CF) provides recent estimates and 5-day forecasts of atmospheric composition to the public in near-real time. To do this, the GEOS Earth system model is coupled with the GEOS-Chem tropospheric-stratospheric unified chemistry extension (UCX) to represent composition from the surface to the top of the GEOS atmosphere (0.01 hPa).
View Article and Find Full Text PDFForecasting ambient PM concentrations with spatiotemporal coverage is key to alerting decision makers of pollution episodes and preventing detrimental public exposure, especially in regions with limited ground air monitoring stations. The existing methods rely on either chemical transport models (CTMs) to forecast spatial distribution of PM with nontrivial uncertainty or statistical algorithms to forecast PM concentration time series at air monitoring locations without continuous spatial coverage. In this study, we developed a PM forecast framework by combining the robust Random Forest algorithm with a publicly accessible global CTM forecast product, NASA's Goddard Earth Observing System "Composition Forecasting" (GEOS-CF), providing spatiotemporally continuous PM concentration forecasts for the next 5 days at a 1 km spatial resolution.
View Article and Find Full Text PDFAir pollution poses a serious threat to children's respiratory health around the world. Satellite remote-sensing technology and air quality models can provide pollution data on a global scale, necessary for risk communication efforts in regions without ground-based monitoring networks. Several large centers, including NASA, produce global pollution forecasts that may be used alongside air quality indices to communicate local, daily risk information to the public.
View Article and Find Full Text PDFThe combination of air quality (AQ) data from satellites and low-cost sensor systems, along with output from AQ models, have the potential to augment high-quality, regulatory-grade data in countries with in situ monitoring networks and provide much needed AQ information in countries without them, including Low and Moderate Income Countries (LMICs). We demonstrate the potential of free and publicly available USA National Aeronautics and Space Administration (NASA) resources, which include capacity building activities, satellite data, and global AQ forecasts, to provide cost-effective, and reliable AQ information to health and AQ professionals around the world. We provide illustrative case studies that highlight how global AQ forecasts along with satellite data may be used to characterize AQ on urban to regional scales, including to quantify pollution concentrations, identify pollution sources, and track the long-range transport of pollution.
View Article and Find Full Text PDFWhile multiple information sources exist concerning surface-level air pollution, no individual source simultaneously provides large-scale spatial coverage, fine spatial and temporal resolution, and high accuracy. It is, therefore, necessary to integrate multiple data sources, using the strengths of each source to compensate for the weaknesses of others. In this study, we propose a method incorporating outputs of NASA's GEOS Composition Forecasting model system with satellite information from the TROPOMI instrument and ground measurement data on surface concentrations.
View Article and Find Full Text PDFThe Goddard Earth Observing System composition forecast (GEOS-CF) system is a high-resolution (0.25°) global constituent prediction system from NASA's Global Modeling and Assimilation Office (GMAO). GEOS-CF offers a new tool for atmospheric chemistry research, with the goal to supplement NASA's broad range of space-based and in-situ observations.
View Article and Find Full Text PDFRecirculation of pollutants due to a bay breeze effect is a key meteorological mechanism impacting air quality near urban coastal areas, but regional and global chemical transport models have historically struggled to capture this phenomenon. We present a case study of a high ozone (O) episode observed over the Chesapeake Bay during the NASA Ozone Water-Land Environmental Transition Study (OWLETS) in summer 2017. OWLETS included a complementary suite of ground-based and airborne observations, with which we characterize the meteorological and chemical context of this event and develop a framework to evaluate model performance.
View Article and Find Full Text PDF1998-2016 ozone trends in the lower stratosphere (LS) are examined using the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) and related NASA products. After removing biases resulting from step-changes in the MERRA-2 ozone observations, a discernible negative trend of -1.67±0.
View Article and Find Full Text PDFThe relationship between springtime mid-latitude cyclones and background ozone (O) is explored using a combination of observational and reanalysis data sets. First, the relationship between surface O observations at two rural monitoring sites on the west coast of Europe - Mace Head, Ireland and Monte Velho, Portugal - and cyclone track frequency in the surrounding regions is examined. Second, detailed case study examination of four individual mid-latitude cyclones and the influence of the associated frontal passage on surface O is performed.
View Article and Find Full Text PDFStratospheric intrusions have been the interest of decades of research for their ability to bring stratospheric ozone (O) into the troposphere with the potential to enhance surface O concentrations. However, these intrusions have been misrepresented in models and reanalyses until recently, as the features of a stratospheric intrusion are best identified in horizontal resolutions of 50 km or smaller. NASA's Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) reanalysis is a publicly-available high-resolution dataset (~50 km) with assimilated O that characterizes O on the same spatiotemporal resolution as the meteorology.
View Article and Find Full Text PDF