Publications by authors named "Knoop L"

Tandem Repeats (TR) occupy a significant portion of the human genome and are the source of polymorphism due to variations in sizes and motif compositions. Some of these variations have been associated with various neuropathological disorders, highlighting the clinical importance of assessing the motif structure of TRs. Moreover, assessing the TR motif variation can offer valuable insights into evolutionary dynamics and population structure.

View Article and Find Full Text PDF

Tandem repeats (TRs) play important roles in genomic variation and disease risk in humans. Long-read sequencing allows for the accurate characterization of TRs; however, the underlying bioinformatics perspectives remain challenging. We present and TREAT: is a fast targeted local assembler, cross-compatible across different sequencing platforms.

View Article and Find Full Text PDF

Background: Motor and cognitive impairment in Parkinson's disease (PD) is associated with dopaminergic dysfunction that stems from substantia nigra (SN) degeneration and concomitant α-synuclein accumulation. Diffusion magnetic resonance imaging (MRI) can detect microstructural alterations of the SN and its tracts to (sub)cortical regions, but their pathological sensitivity is still poorly understood.

Objective: To unravel the pathological substrate(s) underlying microstructural alterations of SN, and its tracts to the dorsal striatum and dorsolateral prefrontal cortex (DLPFC) in PD.

View Article and Find Full Text PDF

Meningeal inflammation strongly associates with demyelination and neuronal loss in the underlying cortex of progressive MS patients, thereby contributing significantly to clinical disability. However, the pathological mechanisms of meningeal inflammation-induced cortical pathology are still largely elusive. By extensive analysis of cortical microglia in post-mortem progressive MS tissue, we identified cortical areas with two MS-specific microglial populations, termed MS1 and MS2 cortex.

View Article and Find Full Text PDF

One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data.

View Article and Find Full Text PDF

A newly developed carbon cone nanotip (CCnT) has been used as field emission cathode both in low voltage SEM (30 kV) electron source and high voltage TEM (200 kV) electron source. The results clearly show, for both technologies, an unprecedented stability of the emission and the probe current with almost no decay during 1h, as well as a very small noise (rms less than 0.5%) compared to standard sources which use tungsten tips as emitting cathode.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the cold-field emission properties of carbon cone nanotips (CCnTs), using a transmission electron microscope (TEM) for in situ analysis.
  • The relationship between current and voltage was examined and analyzed with the Fowler-Nordheim (F-N) equation, while off-axis electron holography mapped the electric field around the nanotip.
  • Results indicated a local electric field of 2.55 V/nm at a tip-anode distance of 680 nm and a work function of 4.8±0.3 eV for the CCnT was determined.
View Article and Find Full Text PDF

Somatic inactivation of PTEN occurs in different human tumors including glioblastoma, endometrial carcinoma and prostate carcinoma. Germline mutations in PTEN result in a range of phenotypic abnormalities that occur with variable penetrance, including neurological features such as macrocephaly, seizures, ataxia and Lhermitte-Duclos disease (also described as dysplastic gangliocytoma of the cerebellum). Homozygous deletion of Pten causes embryonic lethality in mice.

View Article and Find Full Text PDF

The chimeric gene EWS/FLI is present in at least 85% of Ewing's sarcomas as a result of chromosomal translocations. The resulting fusion protein contains the N terminus of the RNA-binding protein EWS and the ETS DNA-binding domain of the transcription factor FLI-1. Although EWS/FLI binds DNA and activates transcription, both EWS and EWS/FLI also interact with SF1 and U1C, essential components of the splicing machinery.

View Article and Find Full Text PDF

EWS is an RNA-binding protein involved in human tumor-specific chromosomal translocations. In approximately 85% of Ewing's sarcomas, such translocations give rise to the chimeric gene EWS/FLI. In the resulting fusion protein, the RNA binding domains from the C terminus of EWS are replaced by the DNA-binding domain of the ETS protein FLI-1.

View Article and Find Full Text PDF