The origin of the proteinacious matrix of the inner ear stones (otoliths) of vertebrates has not yet been clarified. Using the backstroke mutant (bks) of the zebrafish Danio rerio, which is characterized by a complete lack of otoliths, we searched for possibly missing or aberrant structural components within the macular epithelia of the inner ears of embryos on the ultrastructural level. Numerous multilamellar bodies (MLBs) were found.
View Article and Find Full Text PDFThe mechanisms leading to stroke in stroke-prone spontaneously hypertensive rats (SHRSP) are not well understood. We tested the hypothesis that the endothelial tight junctions of the blood-brain barrier are altered in SHRSP prior to stroke. We investigated tight junctions in 13-week-old SHRSP, spontaneously hypertensive stroke-resistant rats (SHR) and age-matched Wistar-Kyoto rats (WKY) by electron microscopy and immunocytochemistry.
View Article and Find Full Text PDFEndothelial cells of the blood-brain barrier form complex tight junctions, which are more frequently associated with the protoplasmic (P-face) than with the exocytoplasmic (E-face) membrane leaflet. The association of tight junctional particles with either membrane leaflet is a result of the expression of various claudins, which are transmembrane constituents of tight junction strands. Mammalian brain endothelial tight junctions exhibit an almost balanced distribution of particles and lose this morphology and barrier function in vitro.
View Article and Find Full Text PDFTight junctions (TJs), the most apical of the intercellular junctions, prevent the passage of ions and molecules through the paracellular pathway. Intracellular signalling molecules are likely to be involved in the regulation of TJ integrity. In order to specifically investigate the role of protein kinase A (PKA) in the maintenance of epithelial TJ integrity, calcium-switch experiments were performed, in which calcium was removed from EpH4 and MDCK culture medium, in the absence or presence of the PKA inhibitors H-89 or HA-1004.
View Article and Find Full Text PDFThe molecular composition and functional properties of cell-cell junctions of choroid plexus epithelial cells and the ependyma of the lateral ventricular wall were investigated in the rat brain. Expression studies of cadherin and alpha- and beta-catenins, as well as expression of occludin and ZO-1, indicated that cell adherens and tight junctions were present in both choroid plexus epithelial cells and in ependymal cells. We then tested the hypothesis that phorbolester in vivo can induce changes in the expression level of adherens and tight junction molecules at the blood-cerebrospinal fluid (CSF) barrier as well as in the ependyma.
View Article and Find Full Text PDF1. The blood-brain barrier is essential for the maintenance and regulation of the neural microenvironment. The blood-brain barrier endothelial cells comprise an extremely low rate of transcytotic vesicles and a restrictive paracellular diffusion barrier.
View Article and Find Full Text PDFThe tight junction is the most apical intercellular junction of epithelial cells and forms a diffusion barrier between individual cells. Occludin is an integral membrane protein specifically associated with the tight junction which may contribute to the function or regulation of this intercellular seal. In order to elucidate the role of occludin at the tight junction, a full length and an N-terminally truncated murine occludin construct, both FLAG-tagged at the N terminus, were stably introduced into the murine epithelial cell line CSG 120/7.
View Article and Find Full Text PDFBrain Res Dev Brain Res
October 1996
The structural equivalent of the blood-brain barrier are the complex tight junctions (TJs) between endothelial cells of brain capillaries. In this study, we have quantitatively investigated by the freeze-fracture technique the modulation of the fine structure of TJs in blood-brain barrier endothelial cells during development of the rat cerebral cortex. The complexity of the TJ network as defined by fractal dimension, the integrity of TJ strands and the degree of TJ particle association to the protoplasmic leaflet of the membrane bilayer in percent of total TJ length were evaluated at embryonic days (E) 13, 15, 18, postnatal day (P) 1 and adult.
View Article and Find Full Text PDFThe concept of fractal geometry provides an elegant tool for the quantitative and objective structural description of various objects, the fractal analysis. Fractal analysis quantifies the structural complexity of objects by a characteristic singular value, the fractal dimension (FD). It can be estimated, e.
View Article and Find Full Text PDFTight junctions between endothelial cells of brain capillaries are the most important structural elements of the blood-brain barrier. Cultured brain endothelial cells are known to loose tight junction-dependent blood-brain barrier characteristics such as macromolecular impermeability and high electrical resistance. We have directly analyzed the structure and function of tight junctions in primary cultures of bovine brain endothelial cells using quantitative freeze-fracture electron microscopy, and ion and inulin permeability.
View Article and Find Full Text PDFNeurosci Lett
January 1993
In the avascular retina of birds, the pigment epithelium (RPE) is the main site of the blood-retina barrier. Tight junctions (TJs) connect the pigment epithelial cells and represent the structural substrate of the barrier function. We investigated, by means of the quantitative freeze-fracturing technique, the TJs of the chicken RPE during development and compared them with the TJs of choroid capillary endothelial cells which are known to be fenestrated.
View Article and Find Full Text PDF