Publications by authors named "Knaan-Shanzer S"

Aim: To study regeneration of damaged human and murine muscle implants and the contribution of added xenogeneic mesenchymal stem cells (MSCs).

Methods: Minced human or mouse skeletal muscle tissues were implanted together with human or mouse MSCs subcutaneously on the back of non-obese diabetic/severe combined immunodeficient mice. The muscle tissues (both human and murine) were minced with scalpels into small pieces (< 1 mm(3)) and aliquoted in portions of 200 mm(3).

View Article and Find Full Text PDF

Multipotentiality and anti-inflammatory activity, the two main properties of mesenchymal stem cells (MSCs), underlie their therapeutic prospective. During the past decade, numerous studies in animal models and clinical trials explored the potential of MSCs in the treatment of diseases associated with tissue regeneration and inflammatory control. Other qualities of MSCs: ready accessibility in bone marrow and fat tissue and rapid expansion in culture make the therapeutic use of patients' own cells feasible.

View Article and Find Full Text PDF

Viral gene carriers are being widely used as gene transfer systems in (trans)differentiation and reprogramming strategies. Forced expression of key regulators of pancreatic differentiation in stem cells, liver cells, pancreatic duct cells, or cells from the exocrine pancreas, can lead to the initiation of endocrine pancreatic differentiation. While several viral vector systems have been employed in such studies, the results reported with adenovirus vectors have been the most promising in vitro and in vivo.

View Article and Find Full Text PDF

Background: Pressure ulcers (PUs) still represent a heavy burden on many patients and nursing institutions. Our understanding of the pathophysiology and development of new treatments are hampered by the scarcity of suitable animal models.

Objective: Evaluation of the translational value of an easily accessible mouse model.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) of mammals have been isolated from many tissues and are characterized by their aptitude to differentiate into bone, cartilage, and fat. Differentiation into cells of other lineages like skeletal muscle, tendon/ligament, nervous tissue, and epithelium has been attained with MSCs derived from some tissues. Whether such abilities are shared by MSCs of all tissues is unknown.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) are multipotent cells residing in the connective tissue of many organs and holding great potential for tissue repair. In culture, human MSCs (hMSCs) are capable of extensive proliferation without showing chromosomal aberrations. Large numbers of hMSCs can thus be acquired from small samples of easily obtainable tissues like fat and bone marrow.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are attractive for cellular therapy of muscular dystrophies as they are easy to procure, can be greatly expanded ex vivo, and contribute to skeletal muscle repair in vivo. However, detailed information about the contribution of bone marrow (BM)-derived human MSCs (BM-hMSCs) to skeletal muscle regeneration in vivo is very limited. Here, we present the results of a comprehensive study of the fate of LacZ-tagged BM-hMSCs following implantation in cardiotoxin (CTX)-injured tibialis anterior muscles (TAMs) of immunodeficient mice.

View Article and Find Full Text PDF

Streptozotocin is widely used to induce diabetes in laboratory animals through multiple low-dose or single high-dose intraperitoneal injections. HPLC analysis has shown that the composition of the solution may change considerably during the first 2 h after dissolution due to equilibration of the 2 anomers (alpha and beta) of streptozotocin. Because of the drug's alleged instability in solution, the typical recommendation is to administer streptozotocin within 10 min after dissolution.

View Article and Find Full Text PDF

The fate of phenotypically defined human hematopoietic stem cells (hHSCs) in culture and the link between their surface marker expression profile and function are still controversial. We studied these aspects of hHSC biology by relating the expression of the early lineage markers (ELM) CD33, CD38, and CD71 on the surface of human umbilical cord blood (UCB) CD34(+) cells to their long-term nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse repopulation activity (LT-SRA). In uncultured UCB samples, LT-SRA was largely confined to the small CD34(+)ELM(-) cell fraction.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is caused by mutations in the X chromosome-linked DMD gene, which encodes the sarcolemma-stabilizing protein-dystrophin. Initial attempts at DMD therapy deployed muscle progenitor cells from healthy donors. The utilization of these cells is, however, hampered by their immunogenicity, while those from DMD patients are scarce and display limited ex vivo replication.

View Article and Find Full Text PDF

Myocardial scar formation impairs heart function by inducing cardiac remodeling, decreasing myocardial compliance, and compromising normal electrical conduction. Conversion of myocardial scar fibroblasts (MSFs) into (functional) cardiomyocytes may be an effective alternative treatment to limit loss of cardiac performance after myocardial injury. In this study, we investigated whether the phenotype of MSFs can be modified by gene transfer into cells with properties of cardiomyocytes.

View Article and Find Full Text PDF

Apoptosis is fundamental to the regulation of homeostasis of stem cells in vivo. Whereas the pathways underlying the molecular and biochemical details of nuclear breakdown that accompanies apoptosis have been elucidated, the precise nature of nuclear reorganization that precedes the demolition phase is not fully understood. Here, we expressed an inducible caspase-8 in human mesenchymal stem cells, and quantitatively followed the early changes in nuclear organization during apoptosis.

View Article and Find Full Text PDF

Myocardial and coronary development are both critically dependent on epicardial cells. During cardiomorphogenesis, a subset of epicardial cells undergoes an epithelial-to-mesenchymal transition (EMT) and invades the myocardium to differentiate into various cell types, including coronary smooth muscle cells and perivascular and cardiac interstitial fibroblasts. Our current knowledge of epicardial EMT and the ensuing epicardium-derived cells (EPDCs) comes primarily from studies of chick and mouse embryonic development.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD), making it amenable to gene- or cell-based therapies. Another possible treatment entails the combination of both principles by transplantation of autologous myogenic cells after their genetic complementation. This approach requires efficient and stable transduction of these cells with recombinant DMD.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is the most prevalent inheritable muscle disease. It is caused by mutations in the approximately 2.5-megabase dystrophin (Dys) encoding gene.

View Article and Find Full Text PDF

Bone marrow-derived human mesenchymal stem cells (hMSCs) lack the Coxsackie-adenovirus (Ad) receptor and thus are poorly transduced by vectors based on human Ad serotype 5 (Ad5). We investigated whether this problem could be overcome by using tropism-modified Ad5 vectors carrying fiber shaft domains and knobs of different human species B Ads (Ad5FBs). To allow quantitative analyses, these vectors coded for the enhanced green fluorescent protein (eGFP).

View Article and Find Full Text PDF

Objective: Myocardin is a recently discovered transcriptional regulator of cardiac and smooth muscle development. Its ability to transactivate smooth muscle-specific genes has been firmly established in animal cells but its effect on heart muscle genes has been investigated less extensively and the consequences of ectopic myocardin expression in human cells are unknown.

Methods: In this study, primary human mesenchymal stem cells and foreskin fibroblasts were transduced with human adenovirus vectors expressing the longest splice variant of the human myocardin gene (hAd5/F50.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, making it a potential target for gene therapy. There is, however, a scarcity of vectors that can accommodate the 14-kb DMD cDNA and permanently genetically correct muscle tissue in vivo or proliferating myogenic progenitors in vitro for use in autologous transplantation. Here, a dual high-capacity adenovirus-adeno-associated virus (hcAd/AAV) vector with two full-length human dystrophin-coding sequences flanked by AAV integration-enhancing elements is presented.

View Article and Find Full Text PDF

Objective: The ability of human cells to repopulate the bone marrow of nonobese diabetic immunodeficient mice (NOD/SCID) is commonly used as a standard assay to quantify the primitive human hematopoietic stem cell population. We studied the applicability of the immunodeficient RAG2(-/-)gammac(-/-) double-knockout mouse for this purpose.

Methods: RAG2(-/-)gammac(-/-) mice and NOD/SCID mice were injected intravenously (i.

View Article and Find Full Text PDF

Viral vectors with high cloning capacity and host chromosomal integration ability are in demand for the efficient and permanent genetic modification of target cells with large DNA molecules. We have generated a hybrid gene transfer vehicle consisting of recombinant adeno-associated virus (AAV) replicative intermediates packaged in adenovirus (Ad) capsids. This arrangement allows cell cycle-independent nuclear delivery of recombinant AAV genomes with lengths considerably above the maximum size (i.

View Article and Find Full Text PDF

Effective gene therapy is dependent on safe gene delivery vehicles that can achieve efficient transduction and sustained transgene expression. We are developing a hybrid viral vector system that combines in a single particle the large cloning capacity and efficient cell cycle-independent nuclear gene delivery of adenovirus (Ad) vectors with the long-term transgene expression and lack of viral genes of adeno-associated virus (AAV) vectors. The strategy being pursued relies on coupling the AAV DNA replication mechanism to the Ad encapsidation process through packaging of AAV-dependent replicative intermediates provided with Ad packaging elements into Ad capsids.

View Article and Find Full Text PDF

Human hematopoietic stem cells (HSCs) are poorly transduced by vectors based on adenovirus serotype 5 (Ad5). This is primarily due to the paucity of the coxsackievirus-Ad receptor on these cells. In an attempt to change the tropism of Ad5, we constructed a series of chimeric E1-deleted Ad5 vectors in which the shaft and knob of the capsid fibers were exchanged with those of other Ad serotypes.

View Article and Find Full Text PDF

In search for culture conditions that will facilitate hemopoietic stem cell (HSC) replication while preserving their primitive properties, we have made use of a multi-parameter FACS assay to define HSCs on basis of their phenotypic characteristics, i.e., CD34++CD33,38,71(-).

View Article and Find Full Text PDF

Transfer of the multidrug resistance-1 (MDR1) gene into hematopoietic progenitor cells may reduce myelotoxicity of MDR1-related cytotoxic agents and therefore allow dose intensification. Mobilized peripheral blood progenitor cells (PBPC) can be obtained in ample quantity and are a suitable target cell population. CD34-selected PBPC samples (n = 6) were transduced with cell-free supernatant (SNT) of a cell line producing recombinant retrovirus containing the human MDR1 gene.

View Article and Find Full Text PDF