Publications by authors named "Kluger P"

White adipose tissue (WAT) plays a crucial role in energy homeostasis and secretes numerous adipokines with far-reaching effects. WAT is linked to diseases such as diabetes, cardiovascular disease, and cancer. There is a high demand for suitable in vitro models to study diseases and tissue metabolism.

View Article and Find Full Text PDF

Cultured or cultivated meat, animal muscle, and fat tissue grown in vitro, could transform the global meat market, reducing animal suffering while using fewer resources than traditional meat production and no antimicrobials at all. To ensure the appeal of cultured meat to future customers, cultured fat is essential for achieving desired mouthfeel, taste, and texture, especially in beef. In this work we show the establishment of primary bovine adipose-derived stem cell spheroids in static and dynamic suspension culture.

View Article and Find Full Text PDF

Within this interdisciplinary study, we demonstrate the applicability of a 6D printer for soft tissue engineering models. For this purpose, a special plant was constructed, combining the technical requirements for 6D printing with the biological necessities, especially for soft tissue. Therefore, a commercial 6D robot arm was combined with a sterilizable housing (including a high-efficiency particulate air (HEPA) filter and ultraviolet radiation (UVC) lamps) and a custom-made printhead and printbed.

View Article and Find Full Text PDF

Cultured Meat (CM) is a growing field in cellular agriculture, driven by the environmental impact of conventional meat production, which contributes to climate change and occupies ≈70% of arable land. As demand for meat alternatives rises, research in this area expands. CM production relies on tissue engineering techniques, where a limited number of animal cells are cultured in vitro and processed to create meat-like tissue comprising muscle and adipose components.

View Article and Find Full Text PDF

Adipose-derived stem cells (ASCs) are a subpopulation of mesenchymal stem cells. Compared to bone marrow-derived stem cells, they can be harvested with minimal invasiveness. ASCs can be easily expanded and were shown to be able to differentiate into several clinically relevant cell types.

View Article and Find Full Text PDF

Background: Lumbar spinal stenosis is a common disease in the aging population. Decompression surgery represents the treatment standard, however, a risk of segmental destabilization depending on the approach and extent of decompression is discussed. So far, biomechanical studies on techniques were mainly conducted on non-degenerated specimens.

View Article and Find Full Text PDF

Adipose tissue is related to the development and manifestation of multiple diseases, demonstrating the importance of suitable in vitro models for research purposes. In this study, adipose tissue lobuli were explanted, cultured, and used as an adipose tissue control to evaluate in vitro generated adipose tissue models. During culture, lobule exhibited a stable weight, lactate dehydrogenase, and glycerol release over 15 days.

View Article and Find Full Text PDF

Due to its wide-ranging endocrine functions, adipose tissue influences the whole body's metabolism. Engineering long-term stable and functional human adipose tissue is still challenging due to the limited availability of suitable biomaterials and adequate cell maturation. We used gellan gum (GG) to create manual and bioprinted adipose tissue models because of its similarities to the native extracellular matrix and its easily tunable properties.

View Article and Find Full Text PDF

The world population is growing and alternative ways of satisfying the increasing demand for meat are being explored, such as using animal cells for the fabrication of cultured meat. Edible biomaterials are required as supporting structures. Hence, we chose agarose, gellan and a xanthan-locust bean gum blend (XLB) as support materials with pea and soy protein additives and analyzed them regarding material properties and biocompatibility.

View Article and Find Full Text PDF

Due to its availability and minimal invasive harvesting human adipose tissue-derived extracellular matrix (dECM) is often used as a biomaterial in various tissue engineering and healthcare applications. Next to dECM, cell-derived ECM (cdECM) can be generated by and isolated from in vitro cultured cells. So far both types of ECM were investigated extensively toward their application as (bio)material in tissue engineering and healthcare.

View Article and Find Full Text PDF

Highly viscous bioinks offer great advantages for the three-dimensional fabrication of cell-laden constructs by microextrusion printing. However, no standardised method of mixing a high viscosity biomaterial ink and a cell suspension has been established so far, leading to non-reproducible printing results. A novel method for the homogeneous and reproducible mixing of the two components using a mixing unit connecting two syringes is developed and investigated.

View Article and Find Full Text PDF

The extracellular matrix (ECM) represents the natural environment of cells in tissue and therefore is a promising biomaterial in a variety of applications. Depending on the purpose, it is necessary to equip the ECM with specific addressable functional groups for further modification with bioactive molecules, for controllable cross-linking and/or covalent binding to surfaces. Metabolic glycoengineering (MGE) enables the specific modification of the ECM with such functional groups without affecting the native structure of the ECM.

View Article and Find Full Text PDF

Azide-bearing cell-derived extracellular matrices ("clickECMs") have emerged as a highly exciting new class of biomaterials. They conserve substantial characteristics of the natural extracellular matrix (ECM) and offer simultaneously small abiotic functional groups that enable bioorthogonal bioconjugation reactions. Despite their attractiveness, investigation of their biomolecular composition is very challenging due to the insoluble and highly complex nature of cell-derived matrices (CDMs).

View Article and Find Full Text PDF

Sacropelvic is a complex junctional area owing to the complex regional anatomy and higher biomechanical stress. However extension of construct is indicated in cases with complex deformities, high grade spondylolisthesis, and complex fractures. The challenges remain which includes pseudoarthrosis and fixation failures.

View Article and Find Full Text PDF

Tissue constructs of physiologically relevant scale require a vascular system to maintain cell viability. However, in vitro vascularization of engineered tissues is still a major challenge. Successful approaches are based on a feeder layer (FL) to support vascularization.

View Article and Find Full Text PDF

In the field of skin tissue engineering, the development of physiologically relevant skin models comprising all skin layers, namely epidermis, dermis, and subcutis, is a great challenge. Increasing regulatory requirements and the ban on animal experiments for substance testing demand the development of reliable and -like test systems, which enable high-throughput screening of substances. However, the reproducibility and applicability of testing has so far been insufficient due to fibroblast-mediated contraction.

View Article and Find Full Text PDF

In recent years, the development and application of decellularized extracellular matrices (ECMs) for use as biomaterials have grown rapidly. These cell-derived matrices (CDMs) represent highly bioactive and biocompatible materials consisting of a complex assembly of biomolecules. Even though CDMs mimic the natural microenvironment of cells in vivo very closely, they still lack specifically addressable functional groups, which are often required to tailor a biomaterial functionality by bioconjugation.

View Article and Find Full Text PDF

Gelatin is one of the most prominent biopolymers in biomedical material research and development. It is frequently used in hybrid hydrogels, which combine the advantageous properties of bio-based and synthetic polymers. To prevent the biological component from leaching out of the hydrogel, the biomolecules can be equipped with azides.

View Article and Find Full Text PDF

Bone tissue is highly vascularized. The crosstalk of vascular and osteogenic cells is not only responsible for the formation of the strongly divergent tissue types but also for their physiological maintenance and repair. Extrusion-based bioprinting presents a promising fabrication method for bone replacement.

View Article and Find Full Text PDF

Human adipose-derived stem cells (hASCs) have become an important cell source for the use in tissue engineering and other medical applications. Not every biomaterial is suitable for human cell culture and requires surface modifications to enable cell adhesion and proliferation. Our hypothesis is that chemical surface modifications introduced by low-discharge plasma enhance the adhesion and proliferation of hASCs.

View Article and Find Full Text PDF

In vitro models of human adipose tissue may serve as beneficial alternatives to animal models to study basic biological processes, identify new drug targets, and as soft tissue implants. With this approach, we aimed to evaluate adipose-derived stem cells (ASC) and mature adipocytes (MA) comparatively for the application in the in vitro setup of adipose tissue constructs to imitate native adipose tissue physiology. We used human primary MAs and human ASCs, differentiated for 14 days, and encapsulated them in collagen type I hydrogels to build up a three-dimensional (3D) adipose tissue model.

View Article and Find Full Text PDF

Purpose: Spinal Cord Society (SCS) and Spine Trauma Study Group (STSG) established a panel tasked with reviewing management and prognosis of acute traumatic cervical central cord syndrome (ATCCS) and recommend a consensus statement for its management.

Methods: A systematic review was performed according to the PRISMA 2009 guidelines. Delphi method was used to identify key research questions and achieve consensus.

View Article and Find Full Text PDF

Artificial adipose tissue (AT) constructs are urgently needed to treat severe wounds, to replace removed tissue, or for the use as in vitro model to screen for potential drugs or study metabolic pathways. The clinical translation of products is mostly prevented by the absence of a vascular component that would allow a sustainable maintenance and an extension of the construct to a relevant size. With this study, we aimed to evaluate the suitability of a novel material based on bacterial cellulose (CBM) on the defined adipogenic differentiation of human adipose-derived stem cells (ASCs) and the maintenance of the received adipocytes (diffASCs) and human microvascular endothelial cells (mvECs) in mono- and coculture.

View Article and Find Full Text PDF