Despite the implementation of next-generation sequencing-based genetic testing on patients with clinical familial hypercholesterolemia (FH), most cases lack complete genetic characterization. We aim to investigate the utility of the polygenic risk score (PRS) in specifying the genetic background of patients from the Latvian Registry of FH (LRFH). We analyzed the whole-genome sequencing (WGS) data of the clinically diagnosed FH patients (n = 339) and controls selected from the Latvian reference population (n = 515).
View Article and Find Full Text PDFThe aim of this study was to investigate the relationship among Lithuanian, Latvian, Indian, and some other populations through a genome-wide data analysis of single nucleotide polymorphisms (SNPs). Limited data of Baltic populations were mostly compared with geographically closer modern and ancient populations in the past, but no previous investigation has explored their genetic relationships with distant populations, like the ones of India, in detail. To address this, we collected and merged genome-wide SNP data from diverse publicly available sources to create a comprehensive dataset with a substantial sample size especially from Lithuanians and Latvians.
View Article and Find Full Text PDFMetformin is widely used for treating type 2 diabetes mellitus (T2D). However, the efficacy of metformin monotherapy is highly variable within the human population. Understanding the potential indirect or synergistic effects of metformin on gut microbiota composition and encoded functions could potentially offer new insights into predicting treatment efficacy and designing more personalized treatments in the future.
View Article and Find Full Text PDFUnlabelled: The human gut teems with a diverse ecosystem of microbes, yet non-bacterial portions of that community are overlooked in studies of metabolic diseases firmly linked to gut bacteria. Type 2 diabetes mellitus (T2D) is associated with compositional shifts in the gut bacterial microbiome and the mycobiome, the fungal portion of the microbiome. However, whether T2D and/or metformin treatment underpins fungal community changes is unresolved.
View Article and Find Full Text PDFIntroduction: Hereditary angioedema (HAE) is a rare, life-threatening autosomal dominant genetic disorder caused by a deficient and/or dysfunctional C1 esterase inhibitor (C1-INH) (type 1 and type 2) leading to recurrent episodes of edema. This study aims to explore HAE patients' metabolomic profiles and identify novel potential diagnostic biomarkers for HAE. The study also examined distinguishing HAE from idiopathic angioedema (AE).
View Article and Find Full Text PDFRecent studies highlight the presence of bacterial sequences in the human blood, suggesting potential clinical significance for circulating microbial signatures. These sequences could presumably serve in the diagnosis, prediction, or monitoring of various health conditions. Ensuring the similarity of samples before bacterial analysis is crucial, especially when combining samples from different biobanks prepared under varying conditions (such as different DNA extraction kits, centrifugation conditions, blood collection tubes, etc.
View Article and Find Full Text PDFLong COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), can manifest as long-term symptoms in multiple organ systems, including respiratory, cardiovascular, neurological, and metabolic systems. In patients with severe COVID-19, immune dysregulation is significant, and the relationship between metabolic regulation and immune response is of great interest in determining the pathophysiological mechanisms. We aimed to characterize the metabolomic footprint of recovering severe COVID-19 patients at three consecutive timepoints and compare metabolite levels to controls.
View Article and Find Full Text PDF: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 is the new coronavirus that caused the coronavirus disease 2019 (COVID-19) outbreak. Studies have increasingly reported the involvement of organs outside the respiratory system, including the gastrointestinal tract. Data on the association between COVID-19 and ulcerative colitis (UC) are lacking.
View Article and Find Full Text PDFNumerous type 2 diabetes (T2D) polygenic risk scores (PGSs) have been developed to predict individuals' predisposition to the disease. An independent assessment and verification of the best-performing PGS are warranted to allow for a rapid application of developed models. To date, only 3% of T2D PGSs have been evaluated.
View Article and Find Full Text PDFSince the emergence of the COVID-19 pandemic, the effects of SARS-CoV-2 have been extensively researched. While much is already known about the acute phase of the infection, increasing attention has turned to the prolonged symptoms experienced by a subset of individuals, commonly referred to as long COVID-19 patients. This study aims to delve deeper into the immune landscape of patients with prolonged symptoms by implementing single-cell mRNA analysis.
View Article and Find Full Text PDFThe gut microbiome plays a pivotal role in the modulation of host responses during viral infections, and recent studies have underscored its significance in the context of coronavirus disease 2019 (COVID-19). We aimed to investigate the dynamics and compositional changes in the gut microbiome of COVID-19 patients, addressing both the acute phase and the recovery process, with a particular focus on the emergence of post-COVID-19 conditions. Involving 146 COVID-19 patients and 110 healthy controls, this study employed a shotgun metagenomics approach for cross-sectional and longitudinal analyses with one- and three-month follow-ups.
View Article and Find Full Text PDFBackground: The causative agent of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is of zoonotic origin and has shown reverse zoonotic transmissibility.
Objectives: The aim of this cross-sectional study was to investigate the serological and molecular prevalence of SARS-CoV-2 infection in the domestic cat (Felis catus) population from Latvia in natural conditions and subsequently perform viral genome analysis.
Methods: Oropharyngeal and rectal swabs and blood samples were collected from 273 domestic cats during the second wave of COVID-19 infection in Latvia.
The gut microbiome is a versatile system regulating numerous aspects of host metabolism. Among other traits, variations in the composition of gut microbial communities are related to blood lipid patterns and hyperlipidaemia, yet inconsistent association patterns exist. This study aims to assess the relationships between the composition of the gut microbiome and variations in lipid profiles among healthy adults.
View Article and Find Full Text PDFDespite rapid improvements in the accessibility of whole-genome sequencing (WGS), understanding the extent of human genetic variation is limited by the scarce availability of genome sequences from underrepresented populations. Developing the population-scale reference database of Latvian genetic variation may fill the gap in European genomes and improve human genomics research. In this study, we analysed a high-coverage WGS dataset comprising 502 individuals selected from the Genome Database of the Latvian Population.
View Article and Find Full Text PDFIntroduction: Research findings of the past decade have highlighted the gut as the main site of action of the oral antihyperglycemic agent metformin despite its pharmacological role in the liver. Extensive evidence supports metformin's modulatory effect on the composition and function of gut microbiota, nevertheless, the underlying mechanisms of the host responses remain elusive. Our study aimed to evaluate metformin-induced alterations in the intestinal transcriptome profiles at different metabolic states.
View Article and Find Full Text PDFThe human gut teems with a diverse ecosystem of microbes, yet non-bacterial portions of that community are overlooked in studies of metabolic diseases firmly linked to gut bacteria. Type 2 diabetes mellitus (T2D) associates with compositional shifts in the gut bacterial microbiome and fungal mycobiome, but whether T2D and/or pharmaceutical treatments underpin the community change is unresolved. To differentiate these effects, we curated a gut mycobiome cohort to-date spanning 1,000 human samples across 5 countries and a murine experimental model.
View Article and Find Full Text PDFAlthough the presence of micro-organisms in the blood of healthy humans is a relatively new concept, there is a growing amount of evidence that blood might have its own microbiome. Previous research has targeted the taxonomic composition of the blood microbiome using DNA-based sequencing methods, while little information is known about the presence of microbial transcripts obtained from the blood and their relation to conditions connected with increased gut permeability. To detect potentially alive and active micro-organisms and investigate differences in taxonomic composition between healthy people and patients with irritable bowel syndrome (IBS), we used the metatranscriptomics approach.
View Article and Find Full Text PDFAntidiabetic drug metformin alters the gut microbiome composition in the context of type 2 diabetes and other diseases; however, its effects have been mainly studied using fecal samples, which offer limited information about the intestinal site-specific effects of this drug. Our study aimed to characterize the spatial variation of the gut microbiome in response to metformin treatment by using a high-fat diet-induced type 2 diabetes mouse model of both sexes. Four intestinal parts, each at the luminal and mucosal layer level, were analyzed in this study by performing 16S rRNA sequencing covering six variable regions (V1-V6) of the gene and thus allowing to obtain in-depth information about the microbiome composition.
View Article and Find Full Text PDFSomatic genetic alterations in pituitary neuroendocrine tumors (PitNET) tissues have been identified in several studies, but detection of overlapping somatic PitNET candidate genes is rare. We sequenced and by employing multiple data analysis methods studied the exomes of 15 PitNET patients to improve discovery of novel factors involved in PitNET development. PitNET patients were recruited to the study before PitNET removal surgery.
View Article and Find Full Text PDFObjective: Circulating miRNAs are found in bodily fluids including plasma and can serve as biomarkers for diseases. The aim of this study was to provide the first insight into the landscape of circulating miRNAs in close proximity to the adrenocorticotropic hormone (ACTH) secreting PitNET. To achieve this objective next-generation sequencing of miRNAs in plasma from bilateral inferior petrosal sinus sampling (BIPSS) - a gold standard in diagnosing ACTH-secreting PitNETs was carried out and selected miRNA candidates were further tested by RT-qPCR in independent patient cohorts.
View Article and Find Full Text PDFThe development of metabolomics in clinical applications has been limited by the lack of validation in large multicenter studies. Large population cohorts and their biobanks are a valuable resource for acquiring insights into molecular disease mechanisms. Nevertheless, most of their collections are not tailored for metabolomics and have been created without specific attention to the pre-analytical requirements for high-quality metabolome assessment.
View Article and Find Full Text PDFBackground & Aims: A genome-wide significant association between anti-Helicobacter pylori (H pylori) IgG titers and Toll-like receptor (TLR1/6/10) locus on 4p14 was demonstrated for individuals of European ancestry, but not uniformly replicated. We re-investigated this association in an updated genome-wide association study (GWAS) meta-analysis for populations with low gastric cancer incidence, address potential causes of cohort heterogeneity, and explore functional implications of genetic variation at the TLR1/6/10 locus.
Methods: The dichotomous GWAS (25% individuals exhibiting highest anti-H pylori IgG titers vs remaining 75%) included discovery and replication sampls of, respectively, n = 15,685 and n = 9676, all of European ancestry.
The heterogeneity in severity and outcome of COVID-19 cases points out the urgent need for early molecular characterization of patients followed by risk-stratified care. The main objective of this study was to evaluate the fluctuations of serum metabolomic profiles of COVID-19 patients with severe illness during the different disease stages in a longitudinal manner. We demonstrate a distinct metabolomic signature in serum samples of 32 hospitalized patients at the acute phase compared to the recovery period, suggesting the tryptophan (tryptophan, kynurenine, and 3-hydroxy-DL-kynurenine) and arginine (citrulline and ornithine) metabolism as contributing pathways in the immune response to SARS-CoV-2 with a potential link to the clinical severity of the disease.
View Article and Find Full Text PDF