In 2020, Baylor College of Medicine held a datathon to inform potential users of a new data warehouse, allow users to address clinical questions, identify warehouse capabilities and limitations, foster collaborations, and engage trainees. Senior faculty selected proposals based on feasibility and impact. Selectees worked with Information Technology for 2 months and presented findings.
View Article and Find Full Text PDFChronic kidney disease (CKD) is a common cause of morbidity in human immunodeficiency virus (HIV)-positive individuals. HIV infection leads to a wide spectrum of kidney cell damage, including tubular epithelial cell (TEC) injury. Among the HIV-1 proteins, the pathologic effects of viral protein R (Vpr) are well established and include DNA damage response, cell cycle arrest, and cell death.
View Article and Find Full Text PDFIntroduction: The role of smoking in risk of death among patients with COVID-19 remains unclear. We examined the association between in-hospital mortality from COVID-19 and smoking status and other factors in the United States Veterans Health Administration (VHA).
Methods: This is an observational, retrospective cohort study using the VHA COVID-19 shared data resources for February 1 to September 11, 2020.
Human immunodeficiency virus (HIV) infection of kidney cells can lead to HIV-associated nephropathy (HIVAN) and aggravate the progression of other chronic kidney diseases. Thus, a better understanding of the mechanisms of HIV-induced kidney cell injury is needed for effective therapy against HIV-induced kidney disease progression. We have previously shown that the acetylation and activation of key inflammatory regulators, NF-κB p65 and STAT3, were increased in HIVAN kidneys.
View Article and Find Full Text PDFMounting evidence suggests that epigenetic modification is important in kidney disease pathogenesis. To determine whether epigenetic regulation is involved in HIV-induced kidney injury, we performed genome-wide methylation profiling and transcriptomic profiling of human primary podocytes infected with HIV-1. Comparison of DNA methylation and RNA sequencing profiles identified several genes that were hypomethylated with corresponding upregulated RNA expression in HIV-infected podocytes.
View Article and Find Full Text PDFThe pathophysiology of human immunodeficiency virus (HIV)-associated cardiomyopathy remains uncertain. We used HIV-1 transgenic (Tg26) mice to explore mechanisms by which HIV-related proteins impacted on myocyte function. Compared to adult ventricular myocytes isolated from nontransgenic (wild type [WT]) littermates, Tg26 myocytes had similar mitochondrial membrane potential (ΔΨ ) under normoxic conditions but lower Δ Ψ after hypoxia/reoxygenation (H/R).
View Article and Find Full Text PDFSince highly active antiretroviral therapy improved long-term survival of acquired immunodeficiency syndrome (AIDS) patients, AIDS cardiomyopathy has become an increasingly relevant clinical problem. We used human immunodeficiency virus (HIV)-1 transgenic (Tg26) mouse to explore molecular mechanisms of AIDS cardiomyopathy. Tg26 mice had significantly lower left ventricular (LV) mass and smaller end-diastolic and end-systolic LV volumes.
View Article and Find Full Text PDFBackground: Little is known about the trends in the incidence and outcomes of patients with end-stage renal disease (ESRD) attributed to human immunodeficiency virus-associated nephropathy (HIVAN). We sought to define relative incidence among ESRD patients, changes in mortality among patients with ESRD attributed to HIVAN, as well as changes in the excess mortality experienced by patients with ESRD attributed to HIVAN compared with otherwise similar ESRD patients with non-HIVAN causes.
Methods: We used the US Renal Data System to identify all individuals with reported HIVAN who initiated treatment for ESRD between 1989 and 2011.
MYH9 encodes non-muscle myosin heavy chain IIA (NMMHCIIA), the predominant force-generating ATPase in non-muscle cells. Several lines of evidence implicate a role for MYH9 in podocytopathies. However, NMMHCIIA's function in podocytes remains unknown.
View Article and Find Full Text PDFInjury to the specialized epithelial cells of the glomerulus (podocytes) underlies the pathogenesis of all forms of proteinuric kidney disease; however, the specific genetic changes that mediate podocyte dysfunction after injury are not fully understood. Here, we performed a large-scale insertional mutagenic screen of injury-resistant podocytes isolated from mice and found that increased expression of the gene Rap1gap, encoding a RAP1 activation inhibitor, ameliorated podocyte injury resistance. Furthermore, injured podocytes in murine models of disease and kidney biopsies from glomerulosclerosis patients exhibited increased RAP1GAP, resulting in diminished glomerular RAP1 activation.
View Article and Find Full Text PDFBackground: Smooth muscle cell (SMC) migration and proliferation critically influence the clinical course of vascular disease. We tested the effect of the novel small leucine-rich repeat protein podocan on SMC migration and proliferation using a podocan-deficient mouse in combination with a model of arterial injury and aortic explant SMC culture. In addition, we examined the effect of overexpression of the human form of podocan on human SMCs and tested for podocan expression in human atherosclerosis.
View Article and Find Full Text PDFBackground: More than two-thirds of the world's HIV-positive individuals live in sub-Saharan Africa, where genetic susceptibility to kidney disease is high and resources for kidney disease screening and antiretroviral therapy (ART) toxicity monitoring are limited. Equations to estimate glomerular filtration rate (GFR) from serum creatinine were derived in Western populations and may be less accurate in this population.
Methods: We compared results from published GFR estimating equations with a direct measure of GFR by iohexol clearance in 99 HIV-infected, ART-naïve Kenyan adults.
The Connectivity Map database contains microarray signatures of gene expression derived from approximately 6000 experiments that examined the effects of approximately 1300 single drugs on several human cancer cell lines. We used these data to prioritize pairs of drugs expected to reverse the changes in gene expression observed in the kidneys of a mouse model of HIV-associated nephropathy (Tg26 mice). We predicted that the combination of an angiotensin-converting enzyme (ACE) inhibitor and a histone deacetylase inhibitor would maximally reverse the disease-associated expression of genes in the kidneys of these mice.
View Article and Find Full Text PDFThe Notch pathway is an evolutionarily conserved signaling cascade that is critical in kidney development and has also been shown to play a pathogenetic role in a variety of kidney diseases. We have previously shown that the Notch signaling pathway is activated in human immunodeficiency virus-associated nephropathy (HIVAN) as well as in a rat model of the disease. In this study, we examined Notch signaling in the well established Tg26 mouse model of HIVAN.
View Article and Find Full Text PDFObjective: HIV-1 gene expression in kidney epithelial cells is thought to be responsible for the pathogenesis of HIV-1-associated nephropathy (HIVAN). Signal transducer and activator of transcription (STAT) 3 signaling is activated in podocytes of patients with HIVAN and drives the dedifferentiation and proliferation of podocytes in culture. We confirm here that deletion of podocyte STAT3 is sufficient to mitigate the glomerular as well as tubulointerstitial findings of HIVAN.
View Article and Find Full Text PDFWith the widespread use of combination antiretroviral agents, the incidence of HIV-associated nephropathy has decreased. Currently, HIV-infected patients live much longer and often suffer from comorbidities such as diabetes mellitus. Recent epidemiological studies suggest that concurrent HIV infection and diabetes mellitus may have a synergistic effect on the incidence of chronic kidney disease.
View Article and Find Full Text PDFDespite intensive antihypertensive therapy there was a high incidence of renal end points in participants of the African American Study of Kidney Disease and Hypertension (AASK) cohort. To better understand this, coding variants in the apolipoprotein L1 (APOL1) and the nonmuscle myosin heavy chain 9 (MYH9) genes were evaluated for an association with hypertension-attributed nephropathy and clinical outcomes in a case-control study. Clinical data and DNA were available for 675 AASK participant cases and 618 African American non-nephropathy control individuals.
View Article and Find Full Text PDFPodocyte injury resulting from a loss of differentiation is the hallmark of many glomerular diseases. We previously showed that retinoic acid (RA) induces podocyte differentiation via stimulation of the cAMP pathway. However, many podocyte maturity markers lack binding sites for RA-response element or cAMP-response element (CREB) in their promoter regions.
View Article and Find Full Text PDFBackground: The continuing disease burden of HIV-associated nephropathy (HIVAN) warrants better elucidation of its pathogenic mechanisms. Given that loss of MYH9 function causes a Mendelian renal disease, we hypothesized that renal expression of MYH9 is down-regulated by HIV-1 in HIVAN pathogenesis.
Method And Results: Using immunofluorescence, we determined that glomerular expression of MYH9 was reduced in the kidneys of HIV-1 transgenic mice.
Retinoic acid decreases proteinuria and glomerulosclerosis in several animal models of kidney disease by protecting podocytes from injury. Our recent in vitro studies suggest that all-trans retinoic acid induces podocyte differentiation by activating the retinoic acid receptor-α (RARα)/cAMP/PKA/CREB pathway. When used in combination with all-trans retinoic acid, an inhibitor of phosphodiesterase 4 further enhanced podocyte differentiation by increasing intracellular cAMP.
View Article and Find Full Text PDFJ Am Soc Nephrol
November 2011
A chromosome 22q13 locus strongly associates with increased risk for idiopathic focal segmental glomerulosclerosis (FSGS), HIV-1-associated nephropathy (HIVAN), and hypertensive ESRD among individuals of African descent. Although initial studies implicated MYH9, more recent analyses localized the strongest association within the neighboring APOL1 gene. In this replication study, we examined the six top-most associated variants in APOL1 and MYH9 in an independent cohort of African Americans with various nephropathies (44 with FSGS, 21 with HIVAN, 32 with IgA nephropathy, and 74 healthy controls).
View Article and Find Full Text PDFThe classic kidney disease of HIV infection, HIV-associated nephropathy (HIVAN), is an aggressive form of collapsing focal segmental glomerulosclerosis with accompanying tubular and interstitial lesions. HIVAN was first described among African-Americans and Haitian immigrants with advanced HIV disease, an early suggestion of a strong genetic association. This genetic susceptibility was recently linked to polymorphisms on chromosome 22 in individuals of African descent.
View Article and Find Full Text PDFBackground: We previously reported an increased risk of all-cause and AIDS mortality among HIV-infected women with albuminuria (proteinuria or microalbuminuria) enrolled in the Women's Interagency HIV Study (WIHS) prior to the introduction of HAART.
Methods: The current analysis includes 1,073 WIHS participants who subsequently initiated HAART. Urinalysis for proteinuria and semi-quantitative testing for microalbuminuria from two consecutive study visits prior to HAART initiation were categorized as follows: confirmed proteinuria (both specimens positive for protein), confirmed microalbuminuria (both specimens positive with at least one microalbuminuria), unconfirmed albuminuria (one specimen positive for proteinuria or microalbuminuria), or negative (both specimens negative).