Publications by authors named "Kloser A"

There is some debate regarding the rate of progression of actinic keratosis (AK) into squamous cell carcinoma (SCC).1-4 However, it is clear that treatment for AK lesions is warranted. Results from numerous studies with aminolevulinic acid (ALA) and methyl aminolevulinate (MAL) photodynamic therapy (PDT) for the treatment of AKs, SCC, and Bowen's disease show high rates of clearance for these lesions.

View Article and Find Full Text PDF

Many cystic fibrosis disease-associated mutations cause a defect in the biosynthetic processing and trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Yeast mutants, defective at various steps of the secretory pathway, have been used to dissect the mechanisms of biosynthetic processing and intracellular transport of several proteins. To exploit these yeast mutants, we have employed an expression system in which the CFTR gene is driven by the promoter of a structurally related yeast ABC protein, Pdr5p.

View Article and Find Full Text PDF

We employed two separate genetic approaches to examine the roles of various OmpF residues in assembly. In one approach, intragenic suppressors of a temperature-sensitive OmpF assembly mutant carrying a W214E substitution were sought at 42 degrees C, or at 37 degrees C in a genetic background lacking the periplasmic folding factor SurA. In the majority of cases (58 out of 61 revertants), the suppressors mapped either at the original site (position 214) or two residues downstream from it.

View Article and Find Full Text PDF

The assembly defect of a mutant outer membrane protein, OmpF315, can be corrected by suppressor mutations that lower lipopolysaccharide (LPS) levels and indirectly elevate phospholipid levels. One such assembly suppressor mutation, asmB1, is an allele of lpxC (envA) whose product catalyses the first rate-limiting step in the lipid A (LPS) biosynthesis pathway. Besides reducing LPS levels, asmB1 confers sensitivity to MacConkey medium.

View Article and Find Full Text PDF

A novel genetic scheme allowed us to isolate extragenic suppressor mutations that restored mutant OmpF assembly. One group of these mutations, termed asmB for assembly suppressor mutation B, permitted mutant OmpF assembly in a non-allele-specific manner. Genetic mapping analyses placed the asmB mutations at the 2-min region of the Escherichia coli K-12 chromosome.

View Article and Find Full Text PDF

Assembly of the OmpF and LamB proteins was kinetically retarded in deep rough lipopolysaccharide mutants of Escherichia coli K-12. OmpF assembly was affected at the step of conversion of metastable trimers to stable trimers, whereas LamB assembly was influenced both at the monomer-to-metastable trimer and metastable-to-stable trimer steps. These assembly defects were reversed in the presence of the sfaA1 and sfaB3 suppressor alleles, which were isolated by using ompF assembly mutants.

View Article and Find Full Text PDF

Deletions which removed rfa genes involved in lipopolysaccharide (LPS) core synthesis were constructed in vitro and inserted into the chromosome by linear transformation. The deletion delta rfa1, which removed rfaGPBI, resulted in a truncated LPS core containing two heptose residues but no hexose and a deep rought phenotype including decreased expression of major outer membrane proteins, hypersensitivity to novobiocin, and resistance to phage U3. In addition, delta rfa1 resulted in the loss of flagella and pili and a mucoid colony morphology.

View Article and Find Full Text PDF