Publications by authors named "Klose A"

Biocompatibility and precise control over their size and shape make DNA origami nanostructures (DONs) promising for drug delivery applications. Whilst many investigations have focused on cancer treatment, this might not be the best fit for DONs that get degraded by nucleases in blood. In comparison, an eye is a uniquely isolated target organ, which could benefit from DONs to achieve and maintain therapeutic concentrations in diseases that threaten the eyesight of millions of patients every year.

View Article and Find Full Text PDF

Charge radii of neutron deficient ^{40}Sc and ^{41}Sc nuclei were determined using collinear laser spectroscopy. With the new data, the chain of Sc charge radii extends below the neutron magic number N=20 and shows a pronounced kink, generally taken as a signature of a shell closure, but one notably absent in the neighboring Ca, K, and Ar isotopic chains. Theoretical models that explain the trend at N=20 for the Ca isotopes cannot reproduce this puzzling behavior.

View Article and Find Full Text PDF

Introduction: Patients with atopic dermatitis (AD) are uniquely susceptible to a number of serious viral skin complications, including eczema herpeticum (EH), caused by herpes simplex virus. This study explored the associations between biomarkers of epithelial barrier dysfunction, type 2 immunity, Staphylococcus aureus infection, and S. aureus-specific immunoglobulin responses in a cohort of AD subjects with and without a history of EH (EH+ and EH-, respectively).

View Article and Find Full Text PDF

Immune responses to COVID-19 infection and vaccination are individual and varied. There is a need to understand the timeline of vaccination efficacy against current and yet to be discovered viral mutations. Assessing immunity to SARS-CoV-2 in the context of immunity to other respiratory viruses is also valuable.

View Article and Find Full Text PDF

Nuclear charge radii of ^{55,56}Ni were measured by collinear laser spectroscopy. The obtained information completes the behavior of the charge radii at the shell closure of the doubly magic nucleus ^{56}Ni. The trend of charge radii across the shell closures in calcium and nickel is surprisingly similar despite the fact that the ^{56}Ni core is supposed to be much softer than the ^{48}Ca core.

View Article and Find Full Text PDF

Background: Tumescent local anaesthesia with prilocain can lead to clinically significant methemoglobin levels. New generation multiple wavelength pulse oximeters (e. g.

View Article and Find Full Text PDF

The human immunological mechanisms defining the clinical outcome of SARS-CoV-2 infection remain elusive. This knowledge gap is mostly driven by the lack of appropriate experimental platforms recapitulating human immune responses in a controlled human lung environment. Here, we report a mouse model (i.

View Article and Find Full Text PDF
Article Synopsis
  • Animal models simulating COVID-19, particularly K18-hACE2 mice, are essential for studying the virus's effects and spread.
  • Researchers tested two doses of the virus in these mice, observing that while they generally showed mild pneumonia, many deteriorated rapidly due to temperature drops and virus spread to the brain.
  • The study found that the virus initially entered the nervous system through the olfactory bulb and that its spread in the brain may not rely on typical routes of infection observed in other tissues, raising questions about how these findings relate to human cases of COVID-19.
View Article and Find Full Text PDF

Arrayed imaging reflectometry (AIR) is an optical biosensor platform for simple, multiplex measurement of antigen-specific antibody responses in patient blood samples. Here, we report the development of StaphAIR, an 8-plex antigen array on the AIR platform for profiling antigen-specific anti- humoral immune responses. Initial validation experiments with mouse and humanized monoclonal antibodies against the autolysin glucosaminidase (Gmd) domain, and subsequent testing with dilution series of pooled positive human serum confirmed analytically robust behavior of the array, with all antigens displaying Langmuir-type dose-response curves.

View Article and Find Full Text PDF

Decades of research have shown that biosensors using photonic circuits fabricated using CMOS processes can be highly sensitive, selective, and quantitative. Unfortunately, the cost of these sensors combined with the complexity of sample handling systems has limited the use of such sensors in clinical diagnostics. We present a new "disposable photonics" sensor platform in which rice-sized (1 × 4 mm) silicon nitride ring resonator sensor chips are paired with plastic micropillar fluidic cards for sample handling and optical detection.

View Article and Find Full Text PDF

An efficient approach is introduced for modelling light propagation in the time domain in 3D heterogeneous absorbing and scattering media ( biological tissues) with curved boundaries. It relies on the finite difference method (FDM) in conjuction with the Crank-Nicolson method for accurately solving the optical diffusion equation (DE). The strength of the FDM lies in its simplicity and efficiency, since the equations are easy to set up, and accessing neighboring grid points only requires simple memory operations, leading to efficient code execution.

View Article and Find Full Text PDF

Newly emerging influenza viruses adapted from animal species pose significant pandemic threats to public health. An understanding of hemagglutinin (HA) receptor-binding specificity to host receptors is key to studying the adaptation of influenza viruses in humans. This information may be particularly useful for predicting the emergence of a pandemic outbreak.

View Article and Find Full Text PDF

To investigate the agreement between critical power (CP) and functional threshold power (FTP), 17 trained cyclists and triathletes (mean ± SD: age 31 ± 9 years, body mass 80 ± 10 kg, maximal aerobic power 350 ± 56 W, peak oxygen consumption 51 ± 10 mL⋅min⋅kg) performed a maximal incremental ramp test, a single-visit CP test and a 20-min time trial (TT) test in randomized order on three different days. CP was determined using a time-trial (TT) protocol of three durations (12, 7, and 3 min) interspersed by 30 min passive rest. FTP was calculated as 95% of 20-min mean power achieved during the TT.

View Article and Find Full Text PDF

Animal models recapitulating distinctive features of severe COVID-19 are critical to enhance our understanding of SARS-CoV-2 pathogenesis. Transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) under the cytokeratin 18 promoter (K18-hACE2) represent a lethal model of SARS-CoV-2 infection. The precise mechanisms of lethality in this mouse model remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • A genetically engineered mouse model (GEMM) for pancreatic ductal adenocarcinoma (PDAC) is being used to enhance our understanding of radiotherapy techniques suitable for pancreatic cancer treatment.
  • The study highlights the limitations of cone beam CT (CBCT) for localizing PDAC, particularly in low-contrast environments, and introduces bioluminescence tomography (BLT) as a more effective alternative for guiding radiation treatment.
  • Initial findings indicate that BLT can accurately determine the tumor's location within 2 mm and volume within 25% accuracy, providing a solid foundation for future radiation research using the PDAC-GEMM model.
View Article and Find Full Text PDF

While label-free multiplex sensor technology enables "mixing and matching" of different capture molecules in principle, in practice this has been rarely (if ever) demonstrated. To fill this gap, we developed protocols for the preparation of mixed aptamer-protein arrays on the arrayed imaging reflectometry (AIR) sensing platform using streptavidin as a common attachment point for both biotinylated proteins and aptamers. Doing so required overcoming the noted instability of dried streptavidin monolayers on surfaces.

View Article and Find Full Text PDF

Detection of antibodies to upper respiratory pathogens is critical to surveillance, assessment of the immune status of individuals, vaccine development, and basic biology. The urgent need for antibody detection tools has proven particularly acute in the COVID-19 era. We report a multiplex label-free antigen microarray on the Arrayed Imaging Reflectometry (AIR) platform for detection of antibodies to SARS-CoV-2, SARS-CoV-1, MERS, three circulating coronavirus strains (HKU1, 229E, OC43) and three strains of influenza.

View Article and Find Full Text PDF

In ecology, climate and other fields, (sub)systems have been identified that can transition into a qualitatively different state when a critical threshold or tipping point in a driving process is crossed. An understanding of those tipping elements is of great interest given the increasing influence of humans on the biophysical Earth system. Complex interactions exist between tipping elements, e.

View Article and Find Full Text PDF

Background: Phospholipase (PL)D1 is crucial for integrin αβ activation of platelets in arterial thrombosis and TNF-α-mediated inflammation and TGF-β-mediated collagen scar formation after myocardial infarction (MI) in mice. Enzymatic activity of PLD is not responsible for PLD-mediated TNF-α signaling and myocardial healing. The impact of PLD2 in ischemia reperfusion injury is unknown.

View Article and Find Full Text PDF

High-intensity interval training (HIIT) is a well-established training modality to improve aerobic and anaerobic capacity. However, sex-specific aspects of different HIIT protocols are incompletely understood. This study aimed to compare two HIIT protocols with different recovery periods in moderately trained females and males and to investigate whether sex affects high-intensity running speed and speed decrement.

View Article and Find Full Text PDF

: This study analyzed the physiological response during Yo-Yo Intermittent Recovery Level 1 (YYIR1) test and re-test by in-field ergospirometry and time-series analyses of respiratory parameters. : Ten moderately trained males (23.4 ± 2.

View Article and Find Full Text PDF

Optical coherence tomography angiography (OCT-A) represents the most recent modality in retinal imaging for non-invasive and depth-selective visualization of blood flow in retinal vessels. With regard to quantitative OCTA measurements for early detection of subclinical alterations, it is of great interest, which intra- and extra-ocular factors affect the results of OCTA measurements. Here, we performed OCTA imaging of the central retina in 65 eyes of 65 young healthy female and male participants and evaluated individual physical fitness levels by standard lactate diagnostic using an incremental maximal performance running test.

View Article and Find Full Text PDF

To analyze occurrence and plasticity of two recently described distinct subtypes of Th1 cells named classic (CD161-/CCR6-) and non-classic (CD161+/CCR6+) Th1 cells in early rheumatoid arthritis (RA) patients and healthy controls (HCs). Frequencies of -generated Th1 cell populations were assessed after cytokine secretion assay for IFNγ/IL-17 and surface staining for CD161/CCR6. Viable Th1 cells (IFNγ+IL-17-) were sorted into classic Th1 (CD161-CCR6-) and non-classic Th1 (CD161+CCR6+) cells, trans-differentiated under different Th cell-inducing conditions, and assessed for plastic changes by analyzing the Th cell-associated cytokine and transcription factor profiles.

View Article and Find Full Text PDF

The kidney's inherent complexity has made identifying cell-specific pathways challenging, particularly when temporally associating them with the dynamic pathophysiology of acute kidney injury (AKI). Here, we combine renal cell-specific luciferase reporter mice using a chemoselective luciferin to guide the acquisition of cell-specific transcriptional changes in C57BL/6 background mice. Hydrogen peroxide generation, a common mechanism of tissue damage, was tracked using a peroxy-caged-luciferin to identify optimum time points for immunoprecipitation of labeled ribosomes for RNA-sequencing.

View Article and Find Full Text PDF

Circulatory microRNAs (c-miRNAs) are regulated in response to physical activity and may exert anti-atherosclerotic effects. Since the vascular endothelium is an abundant source of c-miRNAs, we aimed to identify novel vasculoprotective exercise-induced c-miRNAs by the combined analysis of published endothelial miRNA array data followed by and validation. We identified 8 different array-based publications reporting 185 endothelial shear stress-regulated miRNAs of which 13 were identified in ≥3 independent reports.

View Article and Find Full Text PDF