Publications by authors named "Kloosterhuis N"

Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.

View Article and Find Full Text PDF

Background And Aims: The small intestine plays a central role in lipid metabolism, most notably the uptake of dietary fats that are packaged into chylomicrons and secreted into the circulation for utilisation by peripheral tissues. While microsomal triglyceride transfer protein (MTP) is known to play a key role in this pathway, the intracellular assembly, trafficking, and secretion of chylomicrons is incompletely understood.

Methods And Results: Using human transcriptome datasets to find genes co-regulated with MTTP, we identified ERICH4 as a top hit.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is associated with increased postpartum risk for metabolic dysfunction-associated steatotic liver disease (MASLD). GDM-related MASLD predisposes to advanced liver disease, necessitating a better understanding of its development in GDM. This preclinical study evaluated the MASLD development in a lean GDM mouse model with impaired insulin secretion capacity.

View Article and Find Full Text PDF

The Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex is a pentameric protein complex localized at endosomes, where it facilitates the transport of numerous receptors from endosomes toward the plasma membrane. Recent studies have shown that the WASH complex plays an essential role in cholesterol and glucose homeostasis in humans and mice. To investigate the physiological importance of intestinal WASH, we ablated the WASH component WASHC1 specifically in murine enterocytes.

View Article and Find Full Text PDF

Objective: Carbohydrate Response Element Binding Protein (ChREBP) is a glucose 6-phosphate (G6P)-sensitive transcription factor that acts as a metabolic switch to maintain intracellular glucose and phosphate homeostasis. Hepatic ChREBP is well-known for its regulatory role in glycolysis, the pentose phosphate pathway, and de novo lipogenesis. The physiological role of ChREBP in hepatic glycogen metabolism and blood glucose regulation has not been assessed in detail, and ChREBP's contribution to carbohydrate flux adaptations in hepatic Glycogen Storage Disease type 1 (GSD I) requires further investigation.

View Article and Find Full Text PDF
Article Synopsis
  • Kids with severe malnutrition have changes in their intestines that can cause more infections and higher risk of death.
  • Researchers used mice to study this problem and found that certain treatments could help improve the intestines' ability to absorb nutrients and fight damage.
  • They discovered that a special vitamin and other treatments might help fix the problems caused by malnutrition, and they think it would be good to test this in real-life situations with kids.
View Article and Find Full Text PDF

Cystathionine-β-synthase (CBS) is highly expressed in the liver, and deficiencies in lead to hyperhomocysteinemia (HHCy) and disturbed production of antioxidants such as hydrogen sulfide. We therefore hypothesized that liver-specific deficient (LiCKO) mice would be particularly susceptible to the development of non-alcoholic fatty liver disease (NAFLD). NAFLD was induced by a high-fat high-cholesterol (HFC) diet; LiCKO and controls were split into eight groups based on genotype (con, LiCKO), diet (normal diet, HFC), and diet duration (12 weeks, 20 weeks).

View Article and Find Full Text PDF

Hyperglycaemia in pregnancy (HIP) is a pregnancy complication characterized by mild to moderate hyperglycaemia that negatively impacts short- and long-term health of mother and child. However, relationships between severity and timing of pregnancy hyperglycaemia and postpartum outcomes have not been systemically investigated. We investigated the impact of hyperglycaemia developing during pregnancy (gestational diabetes mellitus, GDM) or already present pre-mating (pre-gestational diabetes mellitus, PDM) on maternal health and pregnancy outcomes.

View Article and Find Full Text PDF

The RAS-MAPK signaling pathway is one of the most frequently dysregulated pathways in human cancer. Small molecule inhibitors directed against this pathway have clinical activity in patients with various cancer types and can improve patient outcomes. However, the use of these drugs is associated with adverse effects, which can result in dose reduction or treatment interruption.

View Article and Find Full Text PDF

Activation of brown adipose tissue (BAT) with the β3-adrenergic receptor agonist CL316,243 protects mice from atherosclerosis development, and the presence of metabolically active BAT is associated with cardiometabolic health in humans. In contrast, exposure to cold or treatment with the clinically used β3-adrenergic receptor agonist mirabegron to activate BAT exacerbates atherosclerosis in apolipoprotein E (ApoE)- and low-density lipoprotein receptor (LDLR)-deficient mice, both lacking a functional ApoE-LDLR pathway crucial for lipoprotein remnant clearance. We, therefore, investigated the effects of mirabegron treatment on dyslipidemia and atherosclerosis development in APOE*3-Leiden.

View Article and Find Full Text PDF

Background: The copper metabolism MURR1 domains/coiled-coil domain containing 22/coiled-coil domain containing 93 (CCC) complex is required for the transport of low-density lipoprotein receptor (LDLR) and LRP1 (LDLR-related protein 1) from endosomes to the cell surface of hepatocytes. Impaired functioning of hepatocytic CCC causes hypercholesterolemia in mice, dogs, and humans. Retriever, a protein complex consisting of subunits VPS26C, VPS35L, and VPS29, is associated with CCC, but its role in endosomal lipoprotein receptor transport is unclear.

View Article and Find Full Text PDF

Background And Aims: The assembly and secretion of VLDL from the liver, a pathway that affects hepatic and plasma lipids, remains incompletely understood. We set out to identify players in the VLDL biogenesis pathway by identifying genes that are co-expressed with the MTTP gene that encodes for microsomal triglyceride transfer protein, key to the lipidation of apolipoprotein B, the core protein of VLDL. Using human and murine transcriptomic data sets, we identified small leucine-rich protein 1 ( SMLR1 ), encoding for small leucine-rich protein 1, a protein of unknown function that is exclusively expressed in liver and small intestine.

View Article and Find Full Text PDF
Article Synopsis
  • * Despite these high lipid levels, patients with GSD Ia usually experience fewer issues with artery hardening (atherogenesis) than others of similar age and gender.
  • * A study using a mouse model resembling GSD Ia patients found that these mice actually had increased atherogenesis, suggesting that further research in larger groups of GSD Ia patients is needed.
View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory disease driven by hypercholesterolemia. During aging, T cells accumulate cholesterol, potentially affecting inflammation. However, the effect of cholesterol efflux pathways mediated by ATP-binding cassette A1 and G1 (ABCA1/ABCG1) on T cell-dependent age-related inflammation and atherosclerosis remains poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • - Nearly 25% of the global population has Non-Alcoholic Fatty Liver Disease (NAFLD), which increases the risk of cardiovascular disease (CVD) primarily due to high levels of triglyceride-rich lipoproteins in these patients.
  • - Researchers conducted a study analyzing liver samples from obese patients, finding that the expression of apolipoprotein F (APOF) is negatively associated with liver fat and plasma triglyceride levels, impacting triglyceride metabolism significantly.
  • - Overexpressing human ApoF in mice led to increased secretion of VLDL-TG from the liver and reduced plasma triglycerides, indicating that ApoF plays a crucial role in managing lipoprotein metabolism and clearance.
View Article and Find Full Text PDF

Deficiencies in Cystathionine-β-synthase (CBS) lead to hyperhomocysteinemia (HHCy), which is considered a risk factor for cardiovascular, bone and neurological disease. Moreover, CBS is important for the production of cysteine, hydrogen sulfide (H S) and glutathione. Studying the biological role of CBS in adult mice has been severely hampered by embryological disturbances and perinatal mortality.

View Article and Find Full Text PDF

Objective: GALNT2, encoding polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2), was initially discovered as a regulator of high-density lipoprotein metabolism. GalNAc-T2 is known to exert these effects through post-translational modification, i.e.

View Article and Find Full Text PDF

Peroxisomes play an important role in the metabolism of a variety of biomolecules, including lipids and bile acids. Peroxisomal Membrane Protein 4 (PXMP4) is a ubiquitously expressed peroxisomal membrane protein that is transcriptionally regulated by peroxisome proliferator-activated receptor α (PPARα), but its function is still unknown. To investigate the physiological function of PXMP4, we generated a Pxmp4 knockout (Pxmp4) mouse model using CRISPR/Cas9-mediated gene editing.

View Article and Find Full Text PDF

Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1 mouse model expressing an Npc1 null allele.

View Article and Find Full Text PDF

Objective: Obesity-related chronic inflammation plays an important role in the development of Metabolic Associated Fatty Liver Disease (MAFLD). Although the contribution of the pro-inflammatory NF-κB signaling pathway to the progression from simple steatosis to non-alcoholic steatohepatitis (NASH) is well-established, its role as an initiator of hepatic steatosis and the underlying mechanism remains unclear. Here, we investigated the hypothesis that the hepatocytic NF-κB signaling pathway acts as a metabolic regulator, thereby promoting hepatic steatosis development.

View Article and Find Full Text PDF

Background And Aims: Patients with glycogen storage disease type 1a (GSD-1a) primarily present with life-threatening hypoglycemia and display severe liver disease characterized by hepatomegaly. Despite strict dietary management, long-term complications still occur, such as liver tumor development. Variations in residual glucose-6-phosphatase (G6PC1) activity likely contribute to phenotypic heterogeneity in biochemical symptoms and complications between patients.

View Article and Find Full Text PDF
Article Synopsis
  • Glycogen storage disease type 1a (GSD Ia) results from mutations in the G6PC1 gene and causes severe hypoglycemia, leading to complications such as hypertriglyceridemia, liver tumors, and increased bleeding risk despite intensive dietary management.
  • In a study using mice with a specific G6PC1 deficiency, it was found that fasting led to decreased blood leukocytes (particularly proinflammatory monocytes) and prolonged bleeding time, but these effects were reversed with refeeding.
  • The findings suggest that fasting-induced hypoglycemia is linked to lower levels of monocytes and impaired platelet function, pointing to a potential mechanism for the increased bleeding tendency in GSD Ia patients.
View Article and Find Full Text PDF

Background And Aims: Bile acids (BAs) aid intestinal fat absorption and exert systemic actions by receptor-mediated signaling. BA receptors have been identified as drug targets for liver diseases. Yet, differences in BA metabolism between humans and mice hamper translation of pre-clinical outcomes.

View Article and Find Full Text PDF

Background & Aims: Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.

View Article and Find Full Text PDF