Unlabelled: One of the key features of macroautophagy/autophagy is the dynamic nature of the membrane rearrangements that take place during expansion of the phagophore, the sequestering compartment that matures into an autophagosome. There are various ways to depict this process, but in most cases the method ultimately relies on a two-dimensional medium. Most people working in the field of autophagy realize that the typical 'C'-shaped drawing of a phagophore is meant to represent a cup- or bowl-like structure that exists in the cell in 3 dimensions.
View Article and Find Full Text PDFMutations in the genes necessary for the structure and function of vertebrate photoreceptor cells are associated with multiple forms of inherited retinal degeneration. Mutations in the gene encoding RHO (rhodopsin) are a common cause of autosomal dominant retinitis pigmentosa (adRP), with the Pro23His variant of RHO resulting in a misfolded protein that activates endoplasmic reticulum stress and the unfolded protein response. Stimulating macroautophagy/autophagy has been proposed as a strategy for clearing misfolded RHO and reducing photoreceptor death.
View Article and Find Full Text PDFRecently, NIH has funded a center for autophagy research named the Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center (UNM HSC), with aspirations to promote autophagy research locally, nationally, and internationally. The center has 3 major missions: (i) to support junior faculty in their endeavors to develop investigations in this area and obtain independent funding; (ii) to develop and provide technological platforms to advance autophagy research with emphasis on cellular approaches for high quality reproducible research; and (iii) to foster international collaborations through the formation of an International Council of Affiliate Members and through hosting national and international workshops and symposia. Scientifically, the AIM center is focused on autophagy and its intersections with other processes, with emphasis on both fundamental discoveries and applied translational research.
View Article and Find Full Text PDFReticulophagy is the conserved macroautophagic/autophagic degradation of the endoplasmic reticulum (ER) in response to ER stress or general nutrient deprivation. Sequestration of the ER by phagophores plays an important role in regulating ER size and homeostasis. In their recent work, Smith et al.
View Article and Find Full Text PDFThe sorting nexin Atg20 interacts with the selective macroautophagy/autophagy scaffolding protein Atg11, suggesting an important role for Atg20 in the initiation of selective autophagy. To explore this possibility, we recently investigated the structure and function of Atg20 using a variety of biophysical and yeast genetic approaches. Our data demonstrate that the BAR domain of Atg20 interacts with Snx4/Atg24 to form an asymmetric heterodimeric BAR domain complex.
View Article and Find Full Text PDFIn my role as an instructor I am constantly looking for ways to more effectively convey information to my audience, which is typically the students in my class. However, the same concerns apply to most of the people who attend a seminar. The approach you take to making the material easier to understand is likely to be influenced by the course you teach.
View Article and Find Full Text PDFThe aim of this study was to investigate the molecular mechanisms underlying the protective effects of hypoxia-inducible factor (HIF) signaling pathway activation in cardiomyocytes under anoxia-reoxygenation (A/R) injury. In this study, rat neonatal cardiomyocytes were pretreated with anti-Hif3A/Hif-3α siRNA or HIF-prolyl hydroxylase inhibitor prior to A/R injury. Our results showed that both HIF3A silencing and HIF-prolyl hydroxylase inhibition effectively increased the cell viability during A/R, led to changes in mRNA expression of HIF1-target genes, and reduced the loss of mitochondrial membrane potential (Δψ).
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
May 2018
The catabolic process of macroautophagy, through the rapid degradation of unwanted cellular components, is involved in a multitude of cellular and organismal functions that are essential to maintain homeostasis. Those functions include adaptation to starvation, cell development and differentiation, innate and adaptive immunity, tumor suppression, autophagic cell death, and maintenance of stem cell stemness. Not surprisingly, an impairment or block of macroautophagy can lead to severe pathologies.
View Article and Find Full Text PDFMacroautophagy (hereafter autophagy) is a cellular recycling pathway essential for cell survival during nutrient deprivation that culminates in the degradation of cargo within the vacuole in yeast and the lysosome in mammals, followed by efflux of the resultant macromolecules back into the cytosol. The yeast vacuole is home to many different hydrolytic proteins and while few have established roles in autophagy, the involvement of others remains unclear. The vacuolar serine carboxypeptidase Y (Prc1) has not been previously shown to have a role in vacuolar zymogen activation and has not been directly implicated in the terminal degradation steps of autophagy.
View Article and Find Full Text PDFMacroautophagy, initially described as a non-selective nutrient recycling process, is essential for the removal of multiple cellular components. In the past three decades, selective autophagy has been characterized as a highly regulated and specific degradation pathway for removal of unwanted cytosolic components and damaged and/or superfluous organelles. Here, we discuss different types of selective autophagy, emphasizing the role of ligand receptors and scaffold proteins in providing cargo specificity, and highlight unanswered questions in the field.
View Article and Find Full Text PDFMacroautophagy/autophagy is a conserved catabolic process that promotes survival during stress. Autophagic dysfunction is associated with pathologies such as cancer and neurodegenerative diseases. Thus, autophagy must be strictly modulated at multiple levels (transcriptional, post-transcriptional, translational and post-translational) to prevent deregulation.
View Article and Find Full Text PDFAutophagy is a highly conserved catabolic pathway that is vital for development, cell survival, and the degradation of dysfunctional organelles and potentially toxic aggregates. Dysregulation of autophagy is associated with cancer, neurodegeneration, and lysosomal storage diseases. Accordingly, autophagy is precisely regulated at multiple levels (transcriptional, post-transcriptional, translational, and post-translational) to prevent aberrant activity.
View Article and Find Full Text PDFOver the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes.
View Article and Find Full Text PDFThe Zap1 transcription factor of is a key regulator in the genomic responses to zinc deficiency. Among the genes regulated by Zap1 during zinc deficiency is the autophagy-related gene Here, we report that Atg41 is required for growth in zinc-deficient conditions, but not when zinc is abundant or when other metals are limiting. Consistent with a role for Atg41 in macroautophagy, we show that nutritional zinc deficiency induces autophagy and that mutation of diminishes that response.
View Article and Find Full Text PDFMacroautophagy/autophagy is a fundamental intracellular homeostatic process that is of interest both for its basic biology and for its effect on human physiology in a wide spectrum of conditions and diseases. Autophagy was first appreciated primarily as a metabolic and cytoplasmic quality control process, but in the past decade its role in immunity has been steadily growing. The connections between these aspects beckon explorations of the network and connections that exist between metabolism, quality control, and inflammation and immunity processes, which are so key to many human diseases including neurodegeneration, obesity and diabetes, chronic inflammatory conditions, cancer, infection, and aging.
View Article and Find Full Text PDFPeroxisomes play important roles in lipid metabolism. Surplus or damaged peroxisomes can be selectively targeted for autophagic degradation, a process termed pexophagy. Maintaining a proper level of pexophagy is critical for cellular homeostasis.
View Article and Find Full Text PDFIn 2013, Dr. Lora Hooper and colleagues described the induction of antibacterial macroautophagy/autophagy in intestinal epithelial cells as a cytoprotective host defense mechanism against invading Salmonella enterica serovar Typhimurium (S. Typhimurium).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2017
The Atg20 and Snx4/Atg24 proteins have been identified in a screen for mutants defective in a type of selective macroautophagy/autophagy. Both proteins are connected to the Atg1 kinase complex, which is involved in autophagy initiation, and bind phosphatidylinositol-3-phosphate. Atg20 and Snx4 contain putative BAR domains, suggesting a possible role in membrane deformation, but they have been relatively uncharacterized.
View Article and Find Full Text PDFAutophagy is a cellular process in which the cell degrades and recycles its own constituents. Given the crucial role of autophagy in physiology, deregulation of autophagic machinery is associated with various diseases. Hence, a thorough understanding of autophagy regulatory mechanisms is crucially important for the elaboration of efficient treatments for different diseases.
View Article and Find Full Text PDFAlthough the human ULK complex mediates phagophore initiation similar to the budding yeast Saccharomyces cerevisiae Atg1 complex, this complex contains ATG101 but not Atg29 and Atg31. Here, we analyzed the fission yeast Schizosaccharomyces pombe Atg1 complex, which has a subunit composition that resembles the human ULK complex. Our pairwise coprecipitation experiments showed that while the interactions between Atg1, Atg13, and Atg17 are conserved, Atg101 does not bind Atg17.
View Article and Find Full Text PDFJ Microbiol Biol Educ
September 2017
As a member of the bromodomain and extraterminal (BET) family, BRD4 (bromodomain containing 4) can bind to acetylated histones and transcription factors, and is also able to recruit various transcriptional regulators. Previous studies have shown that BRD4 mainly plays a positive role in cell growth and cell cycle progression. In a recent study conducted by Sakamaki et al.
View Article and Find Full Text PDFThis Editor's Corner may sound like the title of a mystery novel, but it actually reflects a question I have about the puncta articles that appear in Autophagy (or rather, the ones that do not appear). In particular, I am surprised by the number of solicitations sent out for puncta that are either ignored, or, less frequently, declined. It is not that I expect the principal investigator (PI) to find the invitation to write a punctum undeniably attractive.
View Article and Find Full Text PDFDamaged or aggregated proteins and organelles accumulate with age and contribute to various age-related pathologies including Alzheimer, Parkinson or Huntington diseases. In eukaryotic cells, there are 2 major pathways for degradation of the cytoplasm: The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy. Both pathways can share the characteristic of initiating the process by ubiquitination of the substrate, but they utilize different ubiquitin receptors.
View Article and Find Full Text PDF