Publications by authors named "Kling G"

Microorganisms drive many aspects of organic carbon cycling in thawing permafrost soils, but the compositional trajectory of the post-thaw microbiome and its metabolic activity remain uncertain, which limits our ability to predict permafrost-climate feedbacks in a warming world. Using quantitative metabarcoding and metagenomic sequencing, we determined relative and absolute changes in microbiome composition and functional gene abundance during thaw incubations of wet sedge tundra collected from northern Alaska, USA. Organic soils from the tundra active-layer (0-50 cm), transition-zone (50-70 cm), and permafrost (70+ cm) depths were incubated under reducing conditions at 4 °C for 30 days to mimic an extended thaw duration.

View Article and Find Full Text PDF

Whole-ecosystem interactions and feedbacks constrain ecosystem responses to environmental change. The effects of these constraints on responses to climate trends and extreme weather events have been well studied. Here we examine how these constraints respond to changes in day-to-day weather variability without changing the long-term mean weather.

View Article and Find Full Text PDF

Climate warming has increased permafrost thaw in arctic tundra and extended the duration of annual thaw (number of thaw days in summer) along soil profiles. Predicting the microbial response to permafrost thaw depends largely on knowing how increased thaw duration affects the composition of the soil microbiome. Here, we determined soil microbiome composition from the annually thawed surface active layer down through permafrost from two tundra types at each of three sites on the North Slope of Alaska, USA.

View Article and Find Full Text PDF

In the oligotrophic oceans, key autotrophs depend on "helper" bacteria to reduce oxidative stress from hydrogen peroxide (HO) in the extracellular environment. HO is also a ubiquitous stressor in freshwaters, but the effects of HO on autotrophs and their interactions with bacteria are less well understood in freshwaters. Naturally occurring HO in freshwater systems is proposed to impact the proportion of microcystin-producing (toxic) and non-microcystin-producing (nontoxic) in blooms, which influences toxin concentrations and human health impacts.

View Article and Find Full Text PDF

Accelerated warming in the Arctic has led to concern regarding the amount of carbon emission potential from Arctic water bodies. Yet, aquatic carbon dioxide (CO) and methane (CH) flux measurements remain scarce, particularly at high resolution and over long periods of time. Effluxes of methane (CH) and carbon dioxide (CO) from Toolik Lake, a deep glacial lake in northern Alaska, were measured for the first time with the direct eddy covariance (EC) flux technique during six ice-free lake periods (2010-2015).

View Article and Find Full Text PDF

Microbes and sunlight convert terrigenous dissolved organic matter (DOM) in surface waters to greenhouse gases. Prior studies show contrasting results about how biological and photochemical processes interact to contribute to the degradation of DOM. In this study, DOM leached from the organic layer of tundra soil was exposed to natural sunlight or kept in the dark, incubated in the dark with the natural microbial community, and analysed for gene expression and DOM chemical composition.

View Article and Find Full Text PDF

The Internet of Things (IoT) refers to interconnected devices and objects that collect and transmit data via the Internet. The IoT is an evolving technology, promising to revolutionise industries, but also demanding far-reaching policy changes (e.g.

View Article and Find Full Text PDF

Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood.

View Article and Find Full Text PDF

In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the microbial respiration of DOC to CO. This coupled photochemical and biological degradation of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils increase opportunities for DOC oxidation to CO in surface waters, thereby reinforcing global warming. Here we show how and why sunlight exposure impacts microbial respiration of DOC draining permafrost soils.

View Article and Find Full Text PDF

Long-term measurements of ecological effects of warming are often not statistically significant because of annual variability or signal noise. These are reduced in indicators that filter or reduce the noise around the signal and allow effects of climate warming to emerge. In this way, certain indicators act as medium pass filters integrating the signal over years-to-decades.

View Article and Find Full Text PDF

Human activities are causing a global proliferation of cyanobacterial harmful algal blooms (CHABs), yet we have limited understanding of how these events affect freshwater bacterial communities. Using weekly data from western Lake Erie in 2014, we investigated how the cyanobacterial community varied over space and time, and whether the bloom affected non-cyanobacterial (nc-bacterial) diversity and composition. Cyanobacterial community composition fluctuated dynamically during the bloom, but was dominated by Microcystis and Synechococcus OTUs.

View Article and Find Full Text PDF

Primary producers form the base of food webs but also affect other ecosystem characteristics, such as habitat structure, light availability, and microclimate. Here, we examine changes caused by 5-30+ years of nutrient addition and resulting increases in net primary productivity (NPP) in tundra, streams, and lakes in northern Alaska. The Arctic provides an important opportunity to examine how ecosystems characterized by low diversity and low productivity respond to release from nutrient limitation.

View Article and Find Full Text PDF

Storm events can pulse nutrients and carbon from soils and provide an important subsidy to food webs in oligotrophic streams and lakes. Bacterial nutrient limitation and the potential response of stream aquatic bacteria to storm events was investigated in arctic tundra environments by manipulating both water temperature and inorganic nutrient concentrations in short (up to 4 days) and long duration (up to 2 weeks) laboratory mesocosm experiments. Inorganic N and P additions increased bacterial production ((14)C-labeled leucine uptake) up to seven times over controls, and warmer incubation temperatures increased the speed of this response to added nutrients.

View Article and Find Full Text PDF

Carbon in thawing permafrost soils may have global impacts on climate change; however, the factors that control its processing and fate are poorly understood. The dominant fate of dissolved organic carbon (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Although both processes are most often attributed to bacterial respiration, we found that photochemical oxidation exceeds rates of respiration and accounts for 70 to 95% of total DOC processed in the water column of arctic lakes and rivers.

View Article and Find Full Text PDF

To understand mechanisms linking ecosystem processes and microbial diversity in freshwater ecosystems, bacterial productivity and the metacommunity dynamics of species sorting and mass effects were investigated in an 18 ha headwater lake in northern Alaska. On most sampling dates, the phylogenetic composition of bacterial communities in inflowing streams (inlets) was strikingly different than that in the lake and the outflowing stream (outlet) (16S DGGE fingerprinting), demonstrating the shift in composition that occurs as these communities transit the lake. Outlet and downstream communities were also more productive than inlet and upstream communities ((14)C-leucine incorporation).

View Article and Find Full Text PDF

Exotic earthworm introductions can alter above- and belowground properties of temperate forests, but the net impacts on forest soil carbon (C) dynamics are poorly understood. We used a mesocosm experiment to examine the impacts of earthworm species belonging to three different ecological groups (Lumbricus terrestris [anecic], Aporrectodea trapezoides [endogeic], and Eisenia fetida [epigeic]) on C distributions and storage in reconstructed soil profiles from a sandy temperate forest soil by measuring CO2 and dissolved organic carbon (DOC) losses, litter C incorporation into soil, and soil C storage with monospecific and species combinations as treatments. Soil CO2 loss was 30% greater from the Endogeic x Epigeic treatment than from controls (no earthworms) over the first 45 days; CO2 losses from monospecific treatments did not differ from controls.

View Article and Find Full Text PDF

Hydroxyl radical (•OH) is a highly reactive and unselective oxidant in atmospheric and aquatic systems. Current understanding limits the role of DOM-produced •OH as an oxidant in carbon cycling mainly to sunlit environments where •OH is produced photochemically, but a recent laboratory study proposed a sunlight-independent pathway in which •OH forms during oxidation of reduced aquatic dissolved organic matter (DOM) and iron. Here we demonstrate this non-photochemical pathway for •OH formation in natural aquatic environments.

View Article and Find Full Text PDF

Recent climate change has increased arctic soil temperatures and thawed large areas of permafrost, allowing for microbial respiration of previously frozen C. Furthermore, soil destabilization from melting ice has caused an increase in thermokarst failures that expose buried C and release dissolved organic C (DOC) to surface waters. Once exposed, the fate of this C is unknown but will depend on its reactivity to sunlight and microbial attack, and the light available at the surface.

View Article and Find Full Text PDF

Microbes are transported in hydrological networks through many environments, but the nature and dynamics of underlying microbial metacommunities and the impact of downslope inoculation on patterns of microbial diversity across landscapes are unknown. Pyrosequencing of small subunit ribosomal RNA gene hypervariable regions to characterize microbial communities along a hydrological continuum in arctic tundra showed a pattern of decreasing diversity downslope, with highest species richness in soil waters and headwater streams, and lowest richness in lake water. In a downstream lake, 58% and 43% of the bacterial and archaeal taxa, respectively, were also detected in diverse upslope communities, including most of the numerically dominant lake taxa.

View Article and Find Full Text PDF

Red blood cells (RBC) and reticulocyte parameters were determined on peripheral blood from a subset of patients enrolled in the multicenter study of hydroxyuea (HU) in sickle cell anemia. Multiple blood samples were obtained every 2 weeks. Cellular indices were measured by flow cytometry.

View Article and Find Full Text PDF

Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series.

View Article and Find Full Text PDF

The impact of temperature on bacterial activity and community composition was investigated in arctic lakes and streams in northern Alaska. Aquatic bacterial communities incubated at different temperatures had different rates of production, as measured by (14)C-leucine uptake, indicating that populations within the communities had different temperature optima. Samples from Toolik Lake inlet and outlet were collected at water temperatures of 14.

View Article and Find Full Text PDF

Bacterioplankton community composition was compared across 10 lakes and 14 streams within the catchment of Toolik Lake, a tundra lake in Arctic Alaska, during seven surveys conducted over three years using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified rDNA. Bacterioplankton communities in streams draining tundra were very different than those in streams draining lakes. Communities in streams draining lakes were similar to communities in lakes.

View Article and Find Full Text PDF

An ongoing debate in ecology revolves around how species composition and ecosystem function are related. To address the mechanistic controls of this relationship, we manipulated the composition of dissolved organic matter (DOM) fed to aquatic bacteria to determine effects on both bacterial activity and community composition. Sites along terrestrial to aquatic flow paths were chosen to simulate movement of DOM through catchments, and DOM was fed to downslope and control bacterial communities.

View Article and Find Full Text PDF

Arctic landscapes are characterized by a diversity of ecosystems, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Tundra ecosystems differing in plant composition should contain compositionally and functionally distinct microbial communities that differentially transform dissolved organic matter as it moves downslope from dry, upland to wet, lowland tundra. To test this idea, we studied soil microbial communities in upland tussock, stream-side birch-willow, and lakeside wet sedge tundra in arctic Alaska, USA.

View Article and Find Full Text PDF