Extracellular matrix (ECM) is an intricate structure providing the microenvironment niche that influences stem cell differentiation. This study aimed to investigate the efficacy of decellularized ECM derived from human dental pulp stem cells (dECM_DPSCs) and gingival-derived mesenchymal stem cells (dECM_GSCs) as an inductive scaffold for osteogenic differentiation of GSCs. The proteomic analysis demonstrated that common and signature matrisome proteins from dECM_DPSCs and dECM_GSCs were related to osteogenesis/osteogenic differentiation.
View Article and Find Full Text PDFObjective: Periostin (PN), a major matricellular periodontal ligament (PDL) protein, modulates the remodeling of the PDL and bone, especially under mechanical stress. This study investigated the requirement of PN-integrin signaling in force-induced expression of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) in human PDL stem cells (hPDLSCs).
Methods: Cells were stimulated with intermittent compressive force (ICF) using computerized controlled apparatus.
Objectives: The aim of this study was to investigate the effect of mechanical force on possible dynamic changes of the matrix proteins deposition in the PDL upon in vitro mechanical and in vivo occlusal forces in a rat model with hypofunctional conditions.
Materials And Methods: Intermittent compressive force (ICF) and shear force (SF) were applied to human periodontal ligament stem cells (PDLSCs). Protein expression of collagen I and POSTN was analyzed by western blot technique.
Intermittent compressive force influences human periodontal ligament (PDL) cell behavior that facilitates periodontal tissue regeneration. In response to mechanical stimuli, Yes-associated protein (YAP) has been recognized as a mechanosensitive transcriptional activator that regulates cell proliferation and cell fate decisions. This study aimed to investigate whether compressive forces influence cell proliferation and cell fate decisions of human PDL cells via YAP signaling.
View Article and Find Full Text PDFRelevant immunomodulatory effects have been proposed following allogeneic cell-based therapy with human periodontal ligament stem cells (hPDLSCs). This study aimed to examine the influence of shear stress on the immunosuppressive capacity of hPDLSCs. Cells were subjected to shear stress at different magnitudes (0.
View Article and Find Full Text PDFResearch efforts have been made to develop human salivary gland (SG) secretory epithelia for transplantation in patients with SG hypofunction and dry mouth (xerostomia). However, the limited availability of human biopsies hinders the generation of sufficient cell numbers for epithelia formation and regeneration. Porcine SG have several similarities to their human counterparts, hence could replace human cells in SG modelling studies in vitro.
View Article and Find Full Text PDFBackground: Thalassemia is the most common genetic disease worldwide; those with severe disease require lifelong blood transfusion and iron chelation therapy. The definitive cure for thalassemia is allogeneic hematopoietic stem cell transplantation, which is limited due to lack of HLA-matched donors and the risk of post-transplant complications. Induced pluripotent stem cell (iPSC) technology offers prospects for autologous cell-based therapy which could avoid the immunological problems.
View Article and Find Full Text PDFParoxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH, however, lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT.
View Article and Find Full Text PDFPlatelet transfusion has been widely used to prevent and treat life-threatening thrombocytopenia; however, preparation of a unit of concentrated platelet for transfusion requires at least 4-6 units of whole blood. At present, a platelet unit from a single donor can be prepared using apheresis, but lack of donors is still a major problem. Several approaches to produce platelets from other sources, such as haematopoietic stem cells and pluripotent stem cells, have been attempted but the system is extremely complicated, time-consuming and expensive.
View Article and Find Full Text PDFHuman mesenchymal stem cells (hMSCs) have been used to improve engraftment and to treat graft versus host disease following allogeneic hematopoietic stem cell transplantation. However, oxidative stress presented in the microenvironment can damage the transplanted hMSCs and therefore reduce their survival in target organs. We investigated how to enhance the survival of hMSCs under oxidative stress by overexpressing secreted frizzled-related protein 2 (sFRP2) gene in bone marrow-derived hMSCs and umbilical cord-derived hMSCs.
View Article and Find Full Text PDFIncurable neurological disorders such as Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD) are very common and can be life-threatening because of their progressive disease symptoms with limited treatment options. To provide an alternative renewable cell source for cell-based transplantation and as study models for neurological diseases, we generated induced pluripotent stem cells (iPSCs) from human dermal fibroblasts (HDFs) and then differentiated them into neural progenitor cells (NPCs) and mature neurons by dual SMAD signaling inhibitors. Reprogramming efficiency was improved by supplementing the histone deacethylase inhibitor, valproic acid (VPA), and inhibitor of p160-Rho associated coiled-coil kinase (ROCK), Y-27632, after retroviral transduction.
View Article and Find Full Text PDFThe transforming growth factor-β1 (TGF-β1), a polypeptide member of the TGF-β superfamily, has myriad cellular functions, including cell fate differentiation. We hypothesized that suppression of TGF-β1 signaling would improve the efficacy of neuronal differentiation during embryoid body (EB) development. In this study, mouse embryonic stem cells (ESCs) were allowed to differentiate into their neuronal lineage, both with, and without the TGF-β1 inhibitor (A83-01).
View Article and Find Full Text PDFBortezomib (BZB) is a chemotherapeutic agent approved for treating multiple myeloma (MM) patients. In addition, there are several reports showing that bortezomib can induce murine mesenchymal stem cells (MSCs) to undergo osteogenic differentiation and increase bone formation in vivo. MSCs are the multipotent stem cells that have capacity to differentiate into several mesodermal derivatives including osteoblasts.
View Article and Find Full Text PDFOne goal of research using induced pluripotent stem cell (iPSC) is to generate patient-specific cells which can be used to obtain multiple types of differentiated cells as disease models. Minimally or non-integrating methods to deliver the reprogramming genes are considered to be the best but they may be inefficient. Lentiviral delivery is currently among the most efficient methods but it integrates transgenes into the genome, which may affect the behavior of the iPSC if integration occurs into an important locus.
View Article and Find Full Text PDFEmbryonic stem cell (ESC)-derived cardiomyocytes are a promising cell source for the screening for potential cytoprotective molecules against ischemia/reperfusion injury, however, little is known on their behavior in hypoxia/reoxygenation conditions. Here we tested the cytoprotective effect of the NO-donor SNAP and its downstream cellular pathway. Mouse ESC-derived cardiomyocytes were subjected to 150-min simulated ischemia (SI) followed by 120-min reoxygenation or corresponding non-ischemic conditions.
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) have the ability to form aggregates, which are called embryoid bodies (EBs). EBs mimic early embryonic development and are commonly produced for cardiomyogenesis. Here, we describe a method of EB formation in hydrodynamic conditions using a slow-turning lateral vessel (STLV) bioreactor and the subsequent differentiation of EBs into cardiomyocytes.
View Article and Find Full Text PDFTissue Eng Part C Methods
May 2014
Somatic cell reprogramming has generated enormous interest after the first report by Yamanaka and his coworkers in 2006 on the generation of induced pluripotent stem cells (iPSCs) from mouse fibroblasts. Here we report the generation of stable iPSCs from mouse fibroblasts by recombinant protein transduction (Klf4, Oct4, Sox2, and c-Myc), a procedure designed to circumvent the risks caused by integration of exogenous sequences in the target cell genome associated with gene delivery systems. The recombinant proteins were fused in the frame to the glutathione-S-transferase tag for affinity purification and to the transactivator transcription-nuclear localization signal polypeptide to facilitate membrane penetration and nuclear localization.
View Article and Find Full Text PDFMouse embryonic stem cells (ESCs) and induced pluripotent stem (iPS) cells can be used as models of neuronal differentiation for the investigation of mammalian neurogenesis, pharmacological testing, and development of cell-based therapies. Recently, mouse iPS cell lines have been generated by Sleeping Beauty (SB) transposon-mediated transgenesis (SB-iPS). In this study, we determined for the first time the differentiation potential of mouse SB-iPS cells to form neuronal progenitor cells (NPCs) and neurons.
View Article and Find Full Text PDFEmbryoid body (EB) formation is a common intermediate during in vitro differentiation of pluripotent stem cells into specialized cell types. We have optimized the slow-turning, lateral vessel (STLV) for large scale and homogenous EB production from mouse embryonic stem cells. The effects of inoculating different cell numbers, time of EB adherence to gelatin-coated dishes, and rotation speed for optimal EB formation and cardiac differentiation were investigated.
View Article and Find Full Text PDFIntergeneric nucleus transfer (ig-NT) is a promising technique to produce offspring of endangered species. The objectives of this study were to (1) investigate the in vitro development of marbled cat (MC; Pardofelis marmorata) and flat-headed cat (FC; Prionailurus planiceps) ig-NT embryos reconstructed from domestic cat (DC; Felis catus) oocytes (Experiment 1), (2) evaluate the effect of individual FC donor cell lines on NT success (Experiment 2), and (3) assess the developmental ability of FC-cloned and DC-IVF embryos in vitro and in vivo after oviductal transfer (Experiment 3). In Experiment 1, the morula rate of FC-reconstructed embryos was significantly higher than those of MC and DC embryos but lower than that of parthenogenic DC embryos.
View Article and Find Full Text PDF