Publications by authors named "Klimo O"

Using an analytical model and computer simulation, we show that the wakefield driven by an ultrashort laser pulse in high-density plasma periodically reverses its polarity due to the carrier-envelope phase shift of the driver. The wakefield polarity reversal occurs on spatial scales shorter than the typical length considered for electron acceleration with the laser-wakefield mechanism. Consequently, the energies of accelerated electrons are significantly affected.

View Article and Find Full Text PDF
Article Synopsis
  • - This study investigates how laser beams interact with an under-dense target and a plasma mirror, focusing on photon emission through inverse Compton scattering when accelerated electrons engage with laser light.
  • - Utilizing a steep rising edge in the laser pulse, achieved through its interaction with a thin solid-density foil, enhances the generation of photons during this process.
  • - Numerical simulations show that this technique increases both the quantity of emitted photons and improves the divergence of the resulting photon beam.
View Article and Find Full Text PDF

We show that a commonly accepted transparency threshold for a thin foil in a strong circularly polarized normally incident laser pulse needs a refinement. We present an analytical model that correctly accounts for laser absorption. The refined threshold is determined not solely by the laser amplitude, but by other parameters that are equally or even more important.

View Article and Find Full Text PDF

The new generation of laser facilities is expected to deliver short (10 fs-100 fs) laser pulses with 10-100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence.

View Article and Find Full Text PDF

The intensities of the order of 10 W/cm are required to efficiently generate electron-positron pairs in laser-matter interaction when multiple laser beam collision is employed. To achieve such intense laser fields with the upcoming generation of 10 PW laser beams, focusing to sub-micron spot size is required. In this paper, the possibility of pair production cascade development is studied for the case of a standing wave created by two tightly focused colliding laser pulses.

View Article and Find Full Text PDF

The dynamics of an electron bunch irradiated by two focused colliding super-intense laser pulses and the resulting γ and e(-)e(+) production are studied. Due to attractors of electron dynamics in a standing wave created by colliding pulses the photon emission and pair production, in general, are more efficient with linearly polarized pulses than with circularly polarized ones. The dependence of the key parameters on the laser intensity and wavelength allows us to identify the conditions for the cascade development and γe(-)e(+) plasma creation.

View Article and Find Full Text PDF

The magnetic quadrupole structure formation during the interaction of two ultrashort high power laser pulses with a collisionless plasma is demonstrated with 2.5-dimensional particle-in-cell simulations. The subsequent expansion of the quadrupole is accompanied by magnetic-field annihilation in the ultrarelativistic regime, when the magnetic field cannot be sustained by the plasma current.

View Article and Find Full Text PDF

The interaction of laser pulses with thin grating targets, having a periodic groove at the irradiated surface, is experimentally investigated. Ultrahigh contrast (~10(12)) pulses allow us to demonstrate an enhanced laser-target coupling for the first time in the relativistic regime of ultrahigh intensity >10(19) W/cm(2). A maximum increase by a factor of 2.

View Article and Find Full Text PDF

Nanostructured thin plastic foils have been used to enhance the mechanism of laser-driven proton beam acceleration. In particular, the presence of a monolayer of polystyrene nanospheres on the target front side has drastically enhanced the absorption of the incident 100 TW laser beam, leading to a consequent increase in the maximum proton energy and beam charge. The cutoff energy increased by about 60% for the optimal spheres' diameter of 535 nm in comparison to the planar foil.

View Article and Find Full Text PDF

Two-plasmon-decay (TPD) instability is investigated for conditions relevant for the shock-ignition (SI) scheme of inertial confinement fusion. Two-dimensional particle-in-cell simulations show that in a hot, large-scale plasma, TPD develops in concomitance with stimulated Raman scattering (SRS). It is active only during the first picosecond of interaction, and then it is rapidly saturated due to plasma cavitation.

View Article and Find Full Text PDF

Improvement of energy-conversion efficiency from laser to proton beam is demonstrated by particle simulations in a laser-foil interaction. When an intense short-pulse laser illuminates the thin-foil target, the foil electrons are accelerated around the target by the ponderomotive force. The hot electrons generate a strong electric field, which accelerates the foil protons, and the proton beam is generated.

View Article and Find Full Text PDF

Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets.

View Article and Find Full Text PDF