Publications by authors named "Kletzing C"

Article Synopsis
  • Plasma turbulence is important in space because it helps move energy from magnetic fields and plasma flows down to smaller scales, where it heats up the plasma.
  • Scientists are trying to understand how this heating happens, which will help them make better predictions about space behavior.
  • In this study, data from the Magnetospheric Multiscale (MMS) mission showed how energy is transformed by looking at ion movements, helping to figure out how energy is shared between ions and electrons.
View Article and Find Full Text PDF

We provide a post-mission assessment of the science and data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation on the NASA Van Allen Probes mission. An overview of important scientific results is presented, covering all of the key wave modes and DC magnetic fields measured by EMFISIS. Discussion of the data products, which are publicly available, follows to provide users with guidance on characteristics and known issues of the measurements.

View Article and Find Full Text PDF

In Fourier time-frequency power spectrograms of satellite magnetic field data, electromagnetic ion cyclotron (EMIC) waves may feature discrete, rising tone structures that rapidly increase in frequency. Using data from the Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) fluxgate magnetometer, we conducted a statistical study of EMIC waves from September 2012 through June 2016. We compared the occurrence rates and spatial distributions for all EMIC waves with those for rising tone EMIC waves as a function of magnetic local time (MLT) and shell, as well as a function of and in solar-magnetic (SM) coordinates.

View Article and Find Full Text PDF
Article Synopsis
  • - The Van Allen Probes mission used a distributed operational model where the Mission Operations Center (MOC) managed overall tasks while individual instrument-specific Science Operations Centers (SOCs) focused on data acquisition, processing, and instrument performance for their specific instruments.
  • - Significant collaboration between the instrument SOCs and the project science team led to crucial discoveries through coordinated observations and cross-calibration of instruments during the mission.
  • - Key lessons learned emphasized the value of having dedicated SOCs, which improved the quality and timeliness of instrument data for scientists studying magnetospheric and radiation belt phenomena.
View Article and Find Full Text PDF

We investigate the nature of small-scale irregularities observed in the cusp by the Twin Rockets to Investigate Cusp Electrodynamics-2 (TRICE-2) in regions of enhanced phase scintillations and high-frequency coherent radar backscatter. We take advantage of the fact that the irregularities were detected by spatially separated probes, and present an interferometric analysis of both the observed electron density and electric field fluctuations. We provide evidence that fluctuations spanning a few decameters to about a meter have low phase velocity in the plasma reference frame and are nondispersive, confirming that decameter-scale irregularities follow the  ×  velocity.

View Article and Find Full Text PDF

Plumes have been identified as an access region for chorus waves to enter the plasmasphere. Here, for the first time, chorus wave properties are parameterized by distance from the plume boundary. Case studies and statistical analysis indicate that the polar wave vector angle, , of chorus becomes more oblique near the plume edge.

View Article and Find Full Text PDF

This paper presents the highlights of joint observations of the inner magnetosphere by the Arase spacecraft, the Van Allen Probes spacecraft, and ground-based experiments integrated into spacecraft programs. The concurrent operation of the two missions in 2017-2019 facilitated the separation of the spatial and temporal structures of dynamic phenomena occurring in the inner magnetosphere. Because the orbital inclination angle of Arase is larger than that of Van Allen Probes, Arase collected observations at higher -shells up to .

View Article and Find Full Text PDF

Lightning superbolts are the most powerful and rare lightning events with intense optical emission, first identified from space. Superbolt events occurred in 2010-2018 could be localized by extracting the high energy tail of the lightning stroke signals measured by the very low frequency ground stations of the World-Wide Lightning Location Network. Here, we report electromagnetic observations of superbolts from space using Van Allen Probes satellite measurements, and ground measurements, and with two events measured both from ground and space.

View Article and Find Full Text PDF

While the aurora has attracted attention for millennia, important questions remain unanswered. Foremost is how auroral electrons are accelerated before colliding with the ionosphere and producing auroral light. Powerful Alfvén waves are often found traveling Earthward above auroras with sufficient energy to generate auroras, but there has been no direct measurement of the processes by which Alfvén waves transfer their energy to auroral electrons.

View Article and Find Full Text PDF

We investigate the longitudinal structure of the oxygen torus in the inner magnetosphere for a specific event found on 12 September 2017, using simultaneous observations from the Van Allen Probe B and Arase satellites. It is found that Probe B observed a clear enhancement in the average plasma mass () up to 3-4 amu at  = 3.3-3.

View Article and Find Full Text PDF

Inward radial diffusion driven by ULF waves has long been known to be capable of accelerating radiation belt electrons to very high energies within the heart of the belts, but more recent work has shown that radial diffusion values can be highly event-specific, and mean values or empirical models may not capture the full significance of radial diffusion to acceleration events. Here we present an event of fast inward radial diffusion, occurring during a period following the geomagnetic storm of 17 March 2015. Ultrarelativistic electrons up to ∼8 MeV are accelerated in the absence of intense higher-frequency plasma waves, indicating an acceleration event in the core of the outer belt driven primarily or entirely by ULF wave-driven diffusion.

View Article and Find Full Text PDF

A range of nonlinear wave structures, including Langmuir waves, unipolar electric fields, and bipolar electric fields, are often observed in association with whistler-mode chorus waves in near-Earth space. We demonstrate that the three seemingly different nonlinear wave structures originate from the same nonlinear electron trapping process by whistler-mode chorus waves. The ratio of the Landau resonant velocity to the electron thermal velocity controls the type of nonlinear wave structures that will be generated.

View Article and Find Full Text PDF

Mechanisms for electron injection, trapping, and loss in the near-Earth space environment are investigated during the October 2012 "double-dip" storm using our ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB). Pitch angle and energy scattering are included for the first time in RAM-SCB using and magnetic local time (MLT)-dependent event-specific chorus wave models inferred from NOAA Polar-orbiting Operational Environmental Satellites (POES) and Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science observations. The dynamics of the source (approximately tens of keV) and seed (approximately hundreds of keV) populations of the radiation belts simulated with RAM-SCB is compared with Van Allen Probes Magnetic Electron Ion Spectrometer observations in the morning sector and with measurements from NOAA 15 satellite in the predawn and afternoon MLT sectors.

View Article and Find Full Text PDF

Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a (storm time ring current index) value reaching -223 nT. On 22 June 2015 another strong storm ( reaching -204 nT) was recorded.

View Article and Find Full Text PDF

We show the first evidence for locally excited chorus at frequencies below 0.1  (electron cyclotron frequency) in the outer radiation belt. A statistical study of chorus during geomagnetic storms observed by the Van Allen Probes found that frequencies are often dramatically lower than expected.

View Article and Find Full Text PDF

Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeVelectron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere.

View Article and Find Full Text PDF

Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.

View Article and Find Full Text PDF

The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Field Instrument Suite and Integrated Science suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz.

View Article and Find Full Text PDF

Magnetospheric banded chorus is enhanced whistler waves with frequencies <Ω , where Ω is the electron cyclotron frequency, and a characteristic spectral gap at ≃Ω /2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012.

View Article and Find Full Text PDF

Over 40 years ago it was suggested that electron loss in the region of the radiation belts that overlaps with the region of high plasma density called the plasmasphere, within four to five Earth radii, arises largely from interaction with an electromagnetic plasma wave called plasmaspheric hiss. This interaction strongly influences the evolution of the radiation belts during a geomagnetic storm, and over the course of many hours to days helps to return the radiation-belt structure to its 'quiet' pre-storm configuration. Observations have shown that the long-term electron-loss rate is consistent with this theory but the temporal and spatial dynamics of the loss process remain to be directly verified.

View Article and Find Full Text PDF

Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt, but are inconsistent with acceleration by inward radial diffusive transport. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous electron observations and the lack of a dynamic global wave model.

View Article and Find Full Text PDF

The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth's magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration).

View Article and Find Full Text PDF

Since their discovery more than 50 years ago, Earth's Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades.

View Article and Find Full Text PDF

Turbulence is a ubiquitous phenomenon in space and astrophysical plasmas, driving a cascade of energy from large to small scales and strongly influencing the plasma heating resulting from the dissipation of the turbulence. Modern theories of plasma turbulence are based on the fundamental concept that the turbulent cascade of energy is caused by the nonlinear interaction between counterpropagating Alfvén waves, yet this interaction has never been observationally or experimentally verified. We present here the first experimental measurement in a laboratory plasma of the nonlinear interaction between counterpropagating Alfvén waves, the fundamental building block of astrophysical plasma turbulence.

View Article and Find Full Text PDF

We describe a diagnostic to measure the parallel electron velocity distribution in a magnetized plasma that is overdense (ω(pe) > ω(ce)). This technique utilizes resonant absorption of whistler waves by electrons with velocities parallel to a background magnetic field. The whistler waves were launched and received by a pair of dipole antennas immersed in a cylindrical discharge plasma at two positions along an axial background magnetic field.

View Article and Find Full Text PDF