Redirecting E3 ligases to neo-substrates, leading to their proteasomal disassembly, known as targeted protein degradation (TPD), has emerged as a promising alternative to traditional, occupancy-driven pharmacology. Although the field has expanded tremendously over the past years, the choice of E3 ligases remains limited, with an almost exclusive focus on CRBN and VHL. Here, we report the discovery of novel ligands to the PRY-SPRY domain of TRIM58, a RING ligase that is specifically expressed in erythroid precursor cells.
View Article and Find Full Text PDFAn imidazolone → triazolone replacement addressed the limited passive permeability of a series of protein arginine methyl transferase 5 (PRMT5) inhibitors. This increase in passive permeability was unexpected given the increase in the hydrogen bond acceptor (HBA) count and topological polar surface area (TPSA), two descriptors that are typically inversely correlated with permeability. Quantum mechanics (QM) calculations revealed that this unusual effect was due to an electronically driven disconnect between TPSA and 3D-PSA, which manifests in a reduction in overall HBA strength as indicated by the HBA moment descriptor from COSMO-RS (conductor-like screening model for real solvation).
View Article and Find Full Text PDFThe second biannual Alpine Winter Conference on Medicinal and Synthetic Chemistry (short: Alpine Winter Conference) took place January 19-23, 2020, in St. Anton in western Austria. There were roughly 180 attendees from around the globe, making this mid-sized conference particularly conducive to networking and exchanging ideas over the course of four and a half days.
View Article and Find Full Text PDFRetinoic acid receptor-related orphan receptor gamma-t (RORγt) is considered to be the master transcription factor for the development of Th17 cells that produce proinflammatory cytokines such as IL-17A. Overproportionate Th17 cell abundance is associated with the pathogenesis of many inflammatory conditions including psoriasis. In a high-throughput fluorescence resonance energy transfer (FRET) screen, we identified compound 1 as a hit with promising lipophilic efficiency (LipE).
View Article and Find Full Text PDFThe transcription factor RORγt is an attractive drug-target due to its role in the differentiation of IL-17 producing Th17 cells that play a critical role in the etiopathology of several autoimmune diseases. Identification of starting points for RORγt inverse agonists with good properties has been a challenge. We report the identification of a fragment hit and its conversion into a potent inverse agonist through fragment optimization, growing and merging efforts.
View Article and Find Full Text PDFThe predominant expression of phosphoinositide 3-kinase δ (PI3Kδ) in leukocytes and its critical role in B and T cell functions led to the hypothesis that selective inhibitors of this isoform would have potential as therapeutics for the treatment of allergic and inflammatory disease. Targeting specifically PI3Kδ should avoid potential side effects associated with the ubiquitously expressed PI3Kα and β isoforms. We disclose how morphing the heterocyclic core of previously discovered 4,6-diaryl quinazolines to a significantly less lipophilic 5,6,7,8-tetrahydropyrido[4,3-]pyrimidine, followed by replacement of one of the phenyl groups with a pyrrolidine-3-amine, led to a compound series with an optimal on-target profile and good ADME properties.
View Article and Find Full Text PDFThe T-cell-specific retinoic acid receptor (RAR)-related orphan receptor-γ (RORγt) is a key transcription factor for the production of pro-inflammatory Th17 cytokines, which are implicated in the pathogenesis of autoimmune diseases. Over the years, several structurally diverse RORγt inverse agonists have been reported, but combining high potency and good physicochemical properties has remained a challenging task. We recently reported a new series of inverse agonists based on an imidazopyridine core with good physicochemical properties and excellent selectivity.
View Article and Find Full Text PDFRetinoic-acid-orphan-receptor-C (RORC) is a master regulator of Th17 cells, which are pathogenic in several autoimmune diseases. Genetic deficiency in mice, while preventing autoimmunity, causes early lethality due to metastatic thymic T cell lymphomas. We sought to determine whether pharmacological RORC inhibition could be an effective and safe therapy for autoimmune diseases by evaluating its effects on Th17 cell functions and intrathymic T cell development.
View Article and Find Full Text PDFIn the recent years, PI3Kδ has emerged as a promising target for the treatment of B- and T-cell mediated inflammatory diseases. We present a cellular assay activity analysis for our previously reported 4,6-diaryl quinazoline PI3Kδ inhibitor series that suggests an optimal logP range between 2 and 3. We discovered novel analogues in this lipophilicity space that feature a chiral pyrrolidineoxy-group as a replacement for the position-4 aromatic ring of 4,6-diaryl quinazolines.
View Article and Find Full Text PDFInhibition of the lipid kinase PI3Kδ is a promising principle to treat B and T cell driven inflammatory diseases. Using a scaffold deconstruction-reconstruction strategy, we identified 4-aryl quinazolines that were optimized into potent PI3Kδ isoform selective analogues with good pharmacokinetic properties. With compound 11, we illustrate that biochemical PI3Kδ inhibition translates into modulation of isoform-dependent immune cell function (human, rat, and mouse).
View Article and Find Full Text PDF