Publications by authors named "Kleinle J"

Although the direct, monosynaptic influence of brainstem projections onto motoneurons is well-known, detailed morphological studies on the synaptic contact systems and a correlation with their functional properties are largely lacking. In this work, 43 pairs, each formed by a reticulospinal fiber contacting a lumbar motoneuron, were identified and studied electrophysiologically. Four of these were successfully labeled intracellularly with horseradish peroxidase (HRP) or neurobiotin and reconstructed using a computer-assisted camera lucida with high resolution.

View Article and Find Full Text PDF

Numerous animal behaviors, such as locomotion in vertebrates, are produced by rhythmic contractions that alternate between two muscle groups. The neuronal networks generating such alternate rhythmic activity are generally thought to rely on pacemaker cells or well-designed circuits consisting of inhibitory and excitatory neurons. However, experiments in organotypic cultures of embryonic rat spinal cord have shown that neuronal networks with purely excitatory and random connections may oscillate due to their synaptic depression, even without pacemaker cells.

View Article and Find Full Text PDF

The motor units of a skeletal muscle may be recruited according to different strategies. From all possible recruitment strategies nature selected the simplest one: in most actions of vertebrate skeletal muscles the recruitment of its motor units is by increasing size. This so-called size principle permits a high precision in muscle force generation since small muscle forces are produced exclusively by small motor units.

View Article and Find Full Text PDF

A three-dimensional model for release and diffusion of glutamate in the synaptic cleft was developed and solved analytically. The model consists of a source function describing transmitter release from the vesicle and a diffusion function describing the spread of transmitter in the cleft. Concentration profiles of transmitter at the postsynaptic side were calculated for different transmitter concentrations in a vesicle, release scenarios, and diffusion coefficients.

View Article and Find Full Text PDF