Climate change has increased the incidence of coral bleaching events, resulting in the loss of ecosystem function and biodiversity on reefs around the world. As reef degradation accelerates, the need for innovative restoration tools has become acute. Despite past successes with ultra-low temperature storage of coral sperm to conserve genetic diversity, cryopreservation of larvae has remained elusive due to their large volume, membrane complexity, and sensitivity to chilling injury.
View Article and Find Full Text PDFWe report additional details of the thermal modeling, selection of the laser, and construction of the Cryo Jig used for our ultra-rapid warming studies of mouse oocytes (Jin et al., 2014). A Nd:YAG laser operating at 1064 nm was selected to deliver short 1ms pulses of sufficient power to produce a warming rate of 1×10(7)°C/min from -190°C to 0°C.
View Article and Find Full Text PDFCoral reefs have evolved with a crucial symbiosis between photosynthetic dinoflagellates (genus Symbiodinium) and their cnidarian hosts (Scleractinians). Most coral larvae take up Symbiodinium from their environment; however, the earliest steps in this process have been elusive. Here we demonstrate that the disaccharide trehalose may be an important signal from the symbiont to potential larval hosts.
View Article and Find Full Text PDFVitrification is the most sought after route to the cryopreservation of animal embryos and oocytes and other cells of medical, genetic, and agricultural importance. Current thinking is that successful vitrification requires that cells be suspended in and permeated by high concentrations of protective solutes and that they be cooled at very high rates to below -100°C. We report here that neither of these beliefs holds for mouse oocytes.
View Article and Find Full Text PDFThe osmotic and permeability parameters of a cell membrane are essential physico-chemical properties of a cell and particularly important with respect to cell volume changes and the regulation thereof. Here, we report the hydraulic conductivity, L(p), the non-osmotic volume, V(b), and the Arrhenius activation energy, E(a), of mammalian COS-7 cells. The ratio of V(b) to the isotonic cell volume, V(c iso), was 0.
View Article and Find Full Text PDFWe have developed a simple, inexpensive system (<$300 US) for measuring cooling and warming rates of small (∼ 0.1μl) aqueous samples at rates as high as 10(5)°C/min. The measurement system itself, can track rates approaching one million°C/min.
View Article and Find Full Text PDFThe practice of general surgery in a prison population differs considerably from that in a general surgical practice. We audited surgical consultations at the Mangaung Correctional Centre from December 2003 to April 2009. We found a high incidence of foreign object ingestion and anal pathology.
View Article and Find Full Text PDFCoral species throughout the world are facing severe local and global environmental pressures. Because of the pressing conservation need, we are studying the reproduction, physiology, and cryobiology of coral larvae with the future goal of cryopreserving and maintaining these organisms in a genome resource bank. Effective cryopreservation involves several steps, including the loading and unloading of cells with cryoprotectant and the avoidance of osmotic shock.
View Article and Find Full Text PDFCoral throughout the world are under threat. To save coral via cryopreservation methods, the Symbiodinium algae that live within many coral cells must also be considered. Coral juvenile must often take up these important cells from their surrounding water and when adult coral bleach, they lose their endosymbiotic algae and will die if they are not regained.
View Article and Find Full Text PDFTypically, subzero permeability measurements are experimentally difficult and infrequently reported. Here we report an approach we have applied to mouse oocytes. Interrupted cooling involves rapidly cooling oocytes (50 degrees C/min) to an intermediate temperature above the intracellular nucleation zone, holding them for up to 40 min while they dehydrate, and then rapidly cooling them to -70 degrees C or below.
View Article and Find Full Text PDFTo survive freezing, cells must not undergo internal ice formation during cooling. One vital factor is the cooling rate. The faster cells are cooled, the more their contents supercool, and at some subzero temperature that supercooled cytoplasm will freeze.
View Article and Find Full Text PDFIn the past two decades, laboratories around the world have produced thousands of mutant, transgenic, and wild-type zebrafish lines for biomedical research. Although slow-freezing cryopreservation of zebrafish sperm has been available for 30 years, current protocols lack standardization and yield inconsistent post-thaw fertilization rates. Cell cryopreservation cannot be improved without basic physiological knowledge, which was lacking for zebrafish sperm.
View Article and Find Full Text PDFWe have previously reported that intracellular ice formation (IIF) in mouse oocytes suspended in glycerol/PBS solutions or ethylene glycol (EG)/PBS solutions and rapidly cooled to -50 degrees C or below occurs at temperatures where a critical fraction of the external water remains unfrozen [P. Mazur, S. Seki, I.
View Article and Find Full Text PDFThe formation of ice crystals within cells (IIF) is lethal. The classical approach to avoiding it is to cool cells slowly enough so that nearly all their supercooled freezable water leaves the cell osmotically before they have cooled to a temperature that permits IIF. An alternative approach is to cool the cell rapidly to just above its ice nucleation temperature, and hold it there long enough to permit dehydration.
View Article and Find Full Text PDFWe have previously reported [Cryobiology 51 (2005) 29-53] that intracellular ice formation (IIF) in mouse oocytes suspended in various concentrations of glycerol and ethylene glycol (EG) occurs at temperatures where the percentage of unfrozen water is about 6% and 12%, respectively, even though the IIF temperatures varied from -14 to -41 degrees C. However, because of the way the solutions were prepared, the concentrations of salt and glycerol or EG in that unfrozen fraction at IIF were also rather tightly grouped. The experiments reported in the present paper were designed to separate the effects of the unfrozen fraction at IIF from that of the solute concentration in the unfrozen fraction.
View Article and Find Full Text PDFPhase diagrams are of great utility in cryobiology, especially, those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPAs.
View Article and Find Full Text PDFIt has been shown that aquaporin-3, a water channel, is expressed in mouse embryos. This type of aquaporin transports not only water but also neutral solutes, including cell-permeating cryoprotectants. Therefore, the expression of this channel may have significant influence on the survival of cryopreserved embryos.
View Article and Find Full Text PDFWe are currently investigating factors that influence intracellular ice formation (IIF) in mouse oocytes and oocytes of the frog Xenopus. A major reason for choosing these two species is that while their eggs normally do not possess aquaporin channels in their plasma membranes, these channels can be made to express. We wish to see whether IIF is affected by the presence of these channels.
View Article and Find Full Text PDFThe cryosensitivity of mammalian embryos depends on the stage of development. Because permeability to water and cryoprotectants plays an important role in cryopreservation, it is plausible that the permeability is involved in the difference in the tolerance to cryopreservation among embryos at different developmental stages. In this study, we examined the permeability to water and glycerol of mouse oocytes and embryos, and tried to deduce the pathway for the movement of water and glycerol.
View Article and Find Full Text PDFCoral species throughout the world's oceans are facing severe environmental pressures. We are interested in conserving coral larvae by means of cryopreservation, but little is known about their cellular physiology or cryobiology. These experiments examined cryoprotectant toxicity, dry weight, water and cryoprotectant permeability using cold and radiolabeled glycerol, spontaneous ice nucleation temperatures, chilling sensitivity, and settlement of coral larvae.
View Article and Find Full Text PDFIntracellular ice formation (IIF) plays a central role in cell damage during cryopreservation. We are investigating the factors which trigger IIF in Xenopus oocytes, with and without aquaporin water channels. Here, we report differential scanning calorimeter studies of Xenopus control oocytes which do not express aquaporins.
View Article and Find Full Text PDFMII mouse oocytes in 1 and 1.5M ethylene glycol(EG)/phosphate buffered saline have been subjected to rapid freezing at 50 degrees C/min to -70 degrees C. When this rapid freezing is preceded by a variable hold time of 0-3 min after the initial extracellular ice formation (EIF), the duration of the hold time has a substantial effect on the temperature at which the oocytes subsequently undergo intracellular ice formation (IIF).
View Article and Find Full Text PDFThe occurrence of intracellular ice formation (IIF) during freezing, or the lack there of, is the single most important factor determining whether or not cells survive cryopreservation. One important determinant of IIF is the temperature at which a supercooled cell nucleates. To avoid intracellular ice formation, the cell must be cooled slowly enough so that osmotic dehydration eliminates nearly all cell supercooling before reaching that temperature.
View Article and Find Full Text PDF