Purpose: To create tridimensional (3D) anatomical models of diaphyseal fractures in dogs (3D AMDFD) and to evaluate the models from their radiographs.
Methods: The study consisted of six stages: preparation of femur from a healthy dog cadaver; digitalization of the bone through a 3D scanner and creation of the base model; creation of a 3D AMDFD based on the image of the base model, 3D modeling carried out to reproduce five different types of diaphyseal fractures; printing the models produced on a 3D printer with a thermoplastic material; insertion of neodymium magnets in the fracture line to allow the assembly and disassembly of the parts; and radiography of 3D AMDFD in lateromedial and craniocaudal positions.
Results: The base model and 3D AMDFD had high precision in the replication of bone structures, like the bone in natura.
Purpose: To develop and assess three-dimensional models of physeal fractures in dog femurs (3D MPFDF) using radiographic imaging.
Methods: The study was conducted in three phases: development of 3D MPFDF; radiographic examination of the 3D MPFDF; and comparative analysis of the anatomical and radiographic features of the 3D MPFDF.
Results: The base model and the 3D MPFDF achieved high fidelity in replicating the bone structures, accurately maintaining the morphological characteristics and dimensions such as length, width, and thickness, closely resembling natural bone.
The appearance of fracture complications can present itself as a difficult scenario in a veterinarian's practice, and it can be difficult to diagnose and have a poor prognosis. The recognition of the different types of nonunion fractures can enable quick guidance on the best way to act, thus reducing the cost of treatment and the patient's suffering. The objective of this study was to create 3D models of nonunion fractures in long bones (3D NUFs).
View Article and Find Full Text PDFPurpose To develop a 3D anatomical model for teaching canine epidural anesthesia (3DMEA) and to assess its efficacy for teaching and learning prior to the use of live animals. Methods The creation of 3DMEA was based on 3D optical scanning and 3D printing of canine bone pieces of the fifth to the seventh lumbar vertebrae, sacrum and pelvis. A total of 20 male dogs were scheduled for castration.
View Article and Find Full Text PDF