Publications by authors named "Klaus-Peter Koller"

Proteases catalyze hydrolysis of amide bonds within peptides and proteins, therefore they play crucial functions for organism functioning, but also in industry to facilitate numerous processes. Feather-degrading fungus Onygena corvina (O. corvina) is loaded with numerous proteases that can be utilized for variety of applications.

View Article and Find Full Text PDF

Background: A neutral, heat-sensitive serine protease (NHSSP) originating from the feather-degrading fungus Onygena corvina (O. corvina) was described and defined as an alkaline serine protease of the subtilisin type S8 family, exhibiting an enzymatic activity at neutral pH. Generally, broad specificity proteases, such as proteinase K or trypsin, have found numerous applications in research and biotechnology.

View Article and Find Full Text PDF

Shared transcription factor binding sites that are conserved in distance and orientation help control the expression of gene products that act together in the same biological context. New bioinformatics approaches allow the rapid characterization of shared promoter structures and can be used to find novel interacting molecules. Here, these principles are demonstrated by using molecules linked to the unique functional unit of the glomerular slit diaphragm.

View Article and Find Full Text PDF

Glutarylamidase is an important enzyme employed in the commercial production of 7-aminocephalosporanic acid, a starting compound in the synthesis of cephalosporin antibiotics. 7-aminocephalosporanic acid is obtained from cephalosporin C, a natural antibiotic, either chemically or by a two-step enzymatic process utilizing the enzymes D-amino acid oxidase and glutarylamidase. We have investigated possibilities for redesigning glutarylamidase for the production of 7-aminocephalosporanic acid from cephalosporin C in a single enzymatic step.

View Article and Find Full Text PDF