The thermodynamic aspects of solubility process of sulfonamides with the general structures C(6)H(5)-SO(2)NH-C(6)H(4)-R (R=4-NO(2); 4-Cl) and 4-NH(2)-C(6)H(4)-SO(2)NH-C(6)H(4)-R (R=4-NO(2); 4-CN; 4-Cl; 4-OMe; 4-C(2)H(5)) in water, phosphate buffer with pH 7.4 and n-octanol (as phases modeling various drug delivery pathways) were studied using the isothermal saturated method.
View Article and Find Full Text PDFMany bioanalytic and diagnostic procedures rely on labels with which the molecule of interest can be tracked in or discriminated from accompanying like substances. Herein, we describe a new labeling and detection system based on derivatives of 2,4-dichlorophenoxyacetic acid (2,4-D) and anti-2,4-D antibodies. The 2,4-D system is highly sensitive with a K(D) of 7 x 10(-11) M for the hapten-antibody pair, can be used on a large variety of biomolecules such as proteins, peptides, carbohydrates, and nucleic acids, is not hampered by endogenous backgrounds because 2,4-D is a xenobiotic, and is robust because 2,4-D is a very stable compound that withstands the conditions of most reactions usually performed on biomolecules.
View Article and Find Full Text PDFThe crystal structures of three sulfonamides with the general structure 4-NH(2)-C(6)H(4)-SO(2)NH-C(6)H(4/3)-R (R = 4-Et; 4-OMe; 5-Cl-2-Me) have been determined by X-ray diffraction. On the basis of our previous data and the results obtained a comparative analysis of crystal properties was performed: molecular conformational states, packing architecture, and hydrogen bond networks using graph set notations. The thermodynamic aspects of the sulfonamide sublimation process have been studied by investigating the temperature dependence of vapor pressure using the transpiration method.
View Article and Find Full Text PDFCrystal structures of 4-amino-N-(4-chlorophenyl)-benzene-sulfonamide (IV), 4-amino-N-(2,3-dichlorophenyl)-benzene-sulfonamide (V), 4-amino-N-(3,4-dichlorophenyl)-benzene-sulfonamide (VI) and 4-amino-N-(2,5-dichlorophenyl)-benzene-sulfonamide (VII) were solved by X-ray diffraction method. Temperature dependencies of saturated vapour pressure and thermodynamic functions of sublimation process were calculated (IV: delta Gsub298=74.0 kJ mol(-1), delta Hsub298=134.
View Article and Find Full Text PDFCrystal structures of N-(2-chlorophenyl)-benzene-sulfonamide (I), N-(2,3-dichlorophenyl)-benzene-sulfonamide (II), N-(4-chlorophenyl)-benzene-sulfonamide (III) were solved by X-ray diffraction method. Temperature dependencies of saturated vapor pressure and thermodynamic functions of sublimation process were calculated (I: DeltaG(sub)(298)=50.4kJmol(-1); DeltaH(sub)(298)=114+/-1kJmol(-1); DeltaS(sub)(298)=213+/-3Jmol(-1)K(-1); II: DeltaG(sub)(298)=54.
View Article and Find Full Text PDFArch Pharm (Weinheim)
September 2004
Multiple linear regression analysis was employed in an effort to establish a quantitative structure-activity relationship model for the CDK1-inhibitory activity of a series of 9-substituted paullones. While the electronic properties of the 9-substituents proved to be of high relevance for CDK1 inhibition, both lipophilic and a steric parameters could not be included in a meaningful equation for the calculation of biological properties. The equation solely based on the electronic parameter was successfully used for the prediction of the CDK1-inhibitory activity of a small test set comprising novel paullones with sulfur-containing 9-substituents.
View Article and Find Full Text PDFThe paper describes the design, synthesis, and testing of inhibitors of folate-synthesizing enzymes and of whole cell cultures of Candida albicans. The target enzymes used were dihydropteroic acid synthase (SYN) and dihydrofolate reductase (DHFR). Several series of new 2,4-diaminopyrimidines were synthesized and tested as inhibitors of DHFR and compared with their activity against DHFR derived from mycobacteria and Escherichia coli.
View Article and Find Full Text PDFAlthough the chemical structure and physical properties of peptidoglycan have been elucidated for some time, the precise three-dimensional organization of murein has remained elusive. Earlier published computer simulations of the bacterial murein architecture modeled peptidoglycan strands in either a regular (D. Pink, J.
View Article and Find Full Text PDF