Publications by authors named "Klaus-Dieter Asmus"

A complementary experimental and quantum chemical study has been undertaken on the reactivity, formation and properties of transients generated in the reaction of selected organic selenides with hydroxyl radicals, oxide radical ions, hydrated electrons and hydrogen atoms in aqueous solution. A detailed study of the OH and O (-) reactions with Me(2)Se revealed the formation of the respective adduct-radicals as precursors of (Me(2)Se thereforeSeMe(2))(+) radical cations. In case of the neutral adduct radical Me(2)Se (OH) the conversion into the three-electron bonded dimer species proceeds, in part, via the molecular (Me(2)Se thereforeOH(2))(+) radical cation.

View Article and Find Full Text PDF

The one-electron reduction of bis[1-(2',3',5'-tri-O-acetylribosyl)uracil-4-yl] disulfide, initiated by hydrated electrons in a radiation chemical study, has been shown to yield 1-(2',3',5'-tri-O-acetylribosyl)-4-thiouracil as a stable molecular product. The reduction reaction leads, in the first instance, to a transient, albeit remarkably stable disulfide radical anion. This is characterized by a 2-center-3-electron bond with two bonding sigma-electrons and an antibonding sigma*-electron in the sulfur-sulfur bridge, (-S therefore S-)(-).

View Article and Find Full Text PDF

Model systems, based on aqueous solutions containing isoflurane (CHF(2)OCHClCF(3)) as an example, have been studied in the presence and absence of methionine (MetS) to evaluate reactive fates of halogenated hydroperoxides and peroxyl and alkoxyl radicals. Primary peroxyl radicals, CHF(2)OCH(OO*)CF(3), generated upon 1-e-reduction of isoflurane react quantitatively with MetS via an overall two-electron oxidation mechanism to the corresponding sulfoxide (MetSO). This reaction is accompanied by the formation of oxyl radicals CHF(2)OCH(O*)CF(3) that quantitatively rearrange by a 1,2-hydrogen shift to CHF(2)OC*(OH)CF(3).

View Article and Find Full Text PDF

The one-electron reduction of methanesulfonyl chloride (MeSO2Cl) leads, in the first instance, to an electron adduct MeSO2Cl(.)(-) which lives long enough for direct detection and decays into sulfonyl radicals MeSO2(.) and Cl(-), with k = 1.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined the oxidation of 1,3,5-trithiacyclohexane in water using pulse radiolysis, revealing that hydroxyl radicals lead to the formation of a radical cation, 1(*+), with specific absorption properties.
  • Proton elimination from 1(*+) creates a cyclic C-centered radical that decays quickly, contributing to the formation of a distinct product characterized by a dithioester function.
  • The presence of oxygen affects the reaction pathways, suppressing the formation of certain products and influencing the decay rates of radicals involved.
View Article and Find Full Text PDF