Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory.
View Article and Find Full Text PDFNormal aging leads to myelin alternations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are often correlated with cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory.
View Article and Find Full Text PDFAge-related declines in cognitive abilities occur as early as middle-age in humans and rhesus monkeys. Specifically, performance by aged individuals on tasks of executive function (EF) and working memory (WM) is characterized by greater frequency of errors, shorter memory spans, increased frequency of perseverative responses, impaired use of feedback and reduced speed of processing. However, how aging precisely differentially impacts specific aspects of these cognitive functions and the distinct brain areas mediating cognition are not well understood.
View Article and Find Full Text PDFNeurons in the primate middle temporal (MT) area signal information about visual motion and work together with the lateral prefrontal cortex (LPFC) to support memory-guided comparisons of visual motion direction. These areas are reciprocally connected, and both contain neurons that signal visual motion direction in the strength of their responses. Previously, LPFC was shown to display marked changes in stimulus coding with altered task demands, including changes in selectivity for motion direction, trial-to-trial variability in responses and comparison effects.
View Article and Find Full Text PDFAge-related declines in cognitive abilities occur as early as middle-age in humans and rhesus monkeys. Specifically, performance by aged individuals on tasks of executive function (EF) and working memory (WM) is characterized by greater frequency of errors, shorter memory spans, increased frequency of perseverative responses, impaired use of feedback and reduced speed of processing. However, how aging precisely differentially impacts specific aspects of these cognitive functions and the distinct brain areas mediating cognition are not well understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
Temporal accumulation of evidence is crucial for making accurate judgments based on noisy or ambiguous sensory input. The integration process leading to categorical decisions is thought to rely on competition between neural populations, each encoding a discrete categorical choice. How recurrent neural circuits integrate evidence for continuous perceptual judgments is unknown.
View Article and Find Full Text PDFPerceptual decisions rely on accumulating sensory evidence. This computation has been studied using either drift diffusion models or neurobiological network models exhibiting winner-take-all attractor dynamics. Although both models can account for a large amount of data, it remains unclear whether their dynamics are qualitatively equivalent.
View Article and Find Full Text PDFThe grouping of sensory stimuli into categories is fundamental to cognition. Previous research in the visual and auditory systems supports a two-stage processing hierarchy that underlies perceptual categorization: (a) a "bottom-up" perceptual stage in sensory cortices where neurons show selectivity for stimulus features and (b) a "top-down" second stage in higher level cortical areas that categorizes the stimulus-selective input from the first stage. In order to test the hypothesis that the two-stage model applies to the somatosensory system, 14 human participants were trained to categorize vibrotactile stimuli presented to their right forearm.
View Article and Find Full Text PDFUnlabelled: Visual decisions often involve comparisons of sequential stimuli that can appear at any location in the visual field. The lateral prefrontal cortex (LPFC) in nonhuman primates, shown to play an important role in such comparisons, receives information about contralateral stimuli directly from sensory neurons in the same hemisphere, and about ipsilateral stimuli indirectly from neurons in the opposite hemisphere. This asymmetry of sensory inputs into the LPFC poses the question of whether and how its neurons incorporate sensory information arriving from the two hemispheres during memory-guided comparisons of visual motion.
View Article and Find Full Text PDFUnlabelled: Neuronal activity in the lateral prefrontal cortex (LPFC) reflects the structure and cognitive demands of memory-guided sensory discrimination tasks. However, we still do not know how neuronal activity articulates in network states involved in perceiving, remembering, and comparing sensory information during such tasks. Oscillations in local field potentials (LFPs) provide fingerprints of such network dynamics.
View Article and Find Full Text PDFNeuronal variability in sensory cortex predicts perceptual decisions. This relationship, termed choice probability (CP), can arise from sensory variability biasing behaviour and from top-down signals reflecting behaviour. To investigate the interaction of these mechanisms during the decision-making process, we use a hierarchical network model composed of reciprocally connected sensory and integration circuits.
View Article and Find Full Text PDFPrefrontal persistent activity during the delay of spatial working memory tasks is thought to maintain spatial location in memory. A 'bump attractor' computational model can account for this physiology and its relationship to behavior. However, direct experimental evidence linking parameters of prefrontal firing to the memory report in individual trials is lacking, and, to date, no demonstration exists that bump attractor dynamics underlies spatial working memory.
View Article and Find Full Text PDFIn V1, local circuitry depends on the position in the orientation map: close to pinwheel centers, recurrent inputs show variable orientation preferences; within iso-orientation domains, inputs are relatively uniformly tuned. Physiological properties such as cell's membrane potentials, spike outputs, and temporal characteristics change systematically with map location. We investigate in a firing rate and a Hodgkin-Huxley network model what constraints these tuning characteristics of V1 neurons impose on the cortical operating regime.
View Article and Find Full Text PDFAnalysis of the timecourse of the orientation tuning of responses in primary visual cortex (V1) can provide insight into the circuitry underlying tuning. Several studies have examined the temporal evolution of orientation selectivity in V1 neurons, but there is no consensus regarding the stability of orientation tuning properties over the timecourse of the response. We have used reverse-correlation analysis of the responses to dynamic grating stimuli to re-examine this issue in cat V1 neurons.
View Article and Find Full Text PDFSensory systems adapt their neural code to changes in the sensory environment, often on multiple time scales. Here, we report a new form of adaptation in a first-order auditory interneuron (AN2) of crickets. We characterize the response of the AN2 neuron to amplitude-modulated sound stimuli and find that adaptation shifts the stimulus-response curves toward higher stimulus intensities, with a time constant of 1.
View Article and Find Full Text PDF