Porous earth materials exhibit large-scale deformation patterns, such as deformation bands, which emerge from complex small-scale interactions. This paper introduces a cross-diffusion framework designed to capture these multiscale, multiphysics phenomena, inspired by the study of multi-species chemical systems. A microphysics-enriched continuum approach is developed to accurately predict the formation and evolution of these patterns.
View Article and Find Full Text PDFCatalysis is crucial for clean energy, green chemistry, and environmental remediation, but traditional methods rely on expensive and scarce precious metals. This review addresses this challenge by highlighting the promise of earth-abundant catalysts and the recent advancements in their rational design. Innovative strategies such as physics-inspired descriptors, high-throughput computational techniques, and artificial intelligence (AI)-assisted design with machine learning (ML) are explored, moving beyond time-consuming trial-and-error approaches.
View Article and Find Full Text PDFImmunodiffusion tests offer a simple yet powerful method for detecting protein antigens, but their long assay times hinder clinical utility. We unveil the complex interplay of parameters governing this process using finite element simulations. By meticulously validating our model against real-world data, we elucidate how initial concentrations and diffusivities of antigen and antibody shape the intensity, size, and formation time of the precipitin ring.
View Article and Find Full Text PDFWe present the hypothesis that investigation of precursor mechanisms to large scale instabilities, that have so far been overlooked in geo-processes, is possible. These precursor processes are evident in multicomponent materials, such as granular matter, when driven far from equilibrium on its microscale. The material is then classified as "dense active matter" with unexpected behaviour by non-local dissipation of internal energy releasing its dynamic incompatibility with the macroscopic gradients as self-excitation waves under external forcing.
View Article and Find Full Text PDFShale rocks have been widely investigated to evaluate the productivity of oil/gas. The high temperature generated by the explosive fracturing to stimulate the gas reservoir has a significant impact on the chemical-mechanical properties of shale rocks. Pioneering works have been carried out at temperatures below 500 °C, but little has been done to quantify the correlation between the chemical and mechanical properties of shale at temperatures above 500 °C.
View Article and Find Full Text PDFA method for predicting the isosteric heat of gas adsorption on solid materials is developed which requires the measurement of a single isotherm - where previous methods, such as the Clausius-Clapeyron approach, require either multiple isotherms or complex calorimetric measurement. The Tóth potential function, stemming from the Polanyi potential function, is evaluated using the Langmuir and Tóth isotherm equations to generate new equations for the isosteric heat. These new isosteric heat equations share common parameters with the isotherm equations and are determined from isotherm fitting.
View Article and Find Full Text PDFMany intervention activities in the terrestrial subsurface involve the need to recover/emplace distributions of scalar quantities (e.g. dissolved phase concentrations or heat) from/in volumes of saturated porous media.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2011
Percolation theory provides a tool for linking microstructure and macroscopic material properties. In this paper, percolation theory is applied to the analysis of microtomographic images for the purpose of deriving scaling laws for upscaling of properties. We have tested the acquisition of quantities such as percolation threshold, crossover length, fractal dimension, and critical exponent of correlation length from microtomography.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2010
We present an application of entropy production as an abstraction tool for complex processes in geodynamics. Geodynamic theories are generally based on the principle of maximum dissipation being equivalent to the maximum entropy production. This represents a restriction of the second law of thermodynamics to its upper bound.
View Article and Find Full Text PDFThe classical strength profile of continents is derived from a quasi-static view of their rheological response to stress--one that does not consider dynamic interactions between brittle and ductile layers. Such interactions result in complexities of failure in the brittle-ductile transition and the need to couple energy to understand strain localization. Here we investigate continental deformation by solving the fully coupled energy, momentum and continuum equations.
View Article and Find Full Text PDF