Publications by authors named "Klaus Nusslein"

Article Synopsis
  • The study explores how liming, a method to increase soil pH, affects methane uptake in Amazonian soils, revealing significant results in both forest and pasture environments.
  • Liming treatments led to an increase in methane uptake by about 10% in forest soils and 25% in pasture soils, with specific methanotrophic communities actively incorporating carbon from methane in limed areas.
  • The findings suggest that liming not only enhances soil fertility in degraded Amazonian lands but also helps to improve methane oxidation, making it a beneficial practice for managing greenhouse gas emissions.
View Article and Find Full Text PDF

Acid mine drainage (AMD) pollutes natural waters, but some impacted systems show natural attenuation. We sought to identify the biogeochemical mechanisms responsible for the natural attenuation of AMD. We hypothesized that biogenic sulfide-mediated iron reduction is one mechanism and tested this in an experimental model system.

View Article and Find Full Text PDF

Seasonal floodplains in the Amazon basin are important sources of methane (CH), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.

View Article and Find Full Text PDF

Unlabelled: Phyllosphere microbial communities are increasingly experiencing intense pulse disturbance events such as drought. It is currently unknown how phyllosphere communities respond to such disturbances and if they are able to recover. We explored the stability of phyllosphere communities over time, in response to drought stress, and under recovery from drought on temperate forage grasses.

View Article and Find Full Text PDF

Deforestation of tropical rainforests is a major land use change that alters terrestrial biogeochemical cycling at local to global scales. Deforestation and subsequent reforestation are likely to impact soil phosphorus (P) cycling, which in P-limited ecosystems such as the Amazon basin has implications for long-term productivity. We used a 100-year replicated observational chronosequence of primary forest conversion to pasture, as well as a 13-year-old secondary forest, to test land use change and duration effects on soil P dynamics in the Amazon basin.

View Article and Find Full Text PDF
Article Synopsis
  • Trace elements play a crucial role in the microbial degradation of organic matter and methanogenesis, serving as essential cofactors for enzymes in metabolic pathways.
  • This study analyzes the impact of specific trace elements (Co, Cu, and Mo) on methane production in microbial communities from coalbed methane wells in Wyoming, finding that these elements significantly enhance both methane output and the diversity of the active methanogenic community.
  • High-throughput sequencing revealed that adding trace elements leads to notable shifts in microbial community composition and increased activity among vital bacterial groups, emphasizing the importance of trace elements in subsurface coalbed methane production.
View Article and Find Full Text PDF

Here, we report the metagenomes from two Amazonian floodplain sediments in eastern Brazil. Tropical wetlands are well known for their role in the global carbon cycle. Microbial information on this diversified and dynamic landscape will provide further insights into its significance in regional and global biogeochemical cycles.

View Article and Find Full Text PDF

Cattle ranching is the largest driver of deforestation in the Brazilian Amazon. The rainforest-to-pasture conversion affects the methane cycle in upland soils, changing it from sink to source of atmospheric methane. However, it remains unknown if management practices could reduce the impact of land-use on methane cycling.

View Article and Find Full Text PDF

Climatic changes are altering precipitation patterns in the Amazon and may influence soil methane (CH) fluxes due to the differential responses of methanogenic and methanotrophic microorganisms. However, it remains unclear if these climate feedbacks can amplify land-use-related impacts on the CH cycle. To better predict the responses of soil CH-cycling microorganisms and emissions under altered moisture levels in the Eastern Brazilian Amazon, we performed a 30-day microcosm experiment manipulating the moisture content (original moisture; 60%, 80%, and 100% of field capacity - FC) of forest and pasture soils.

View Article and Find Full Text PDF

Southern Amazonia is currently experiencing extensive land use change from forests to agriculture caused by increased local and global demand for agricultural products. However, little is known about the impacts of deforestation and land use change on soil biota. We investigated two regions in southern Amazonia (rainforest and Savannah/Cerrado biomes), analysing soil biota community turnover based on 16S (Archaea and Bacteria) and 18S rRNA genes (Eukaryotes, including Fungi, Protists and Animalia) and correlating them with soil chemistry and land use intensity.

View Article and Find Full Text PDF

Grasslands represent a critical ecosystem important for global food production, soil carbon storage, and water regulation. Current intensification and expansion practices add to the degradation of grasslands and dramatically increase greenhouse gas emissions and pollution. Thus, new ways to sustain and improve their productivity are needed.

View Article and Find Full Text PDF

The Amazonian floodplain forests are dynamic ecosystems of great importance for the regional hydrological and biogeochemical cycles and function as a significant CH source contributing to the global carbon balance. Unique geochemical factors may drive the microbial community composition and, consequently, affect CH emissions across floodplain areas. Here, we report the in situ composition of CH cycling microbial communities in Amazonian floodplain sediments.

View Article and Find Full Text PDF

The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink threatened by agricultural conversion. Rainforest-to-pasture conversion stimulates the release of methane, a potent greenhouse gas. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types.

View Article and Find Full Text PDF

Amazonian rainforest is undergoing increasing rates of deforestation, driven primarily by cattle pasture expansion. Forest-to-pasture conversion has been associated with increases in soil methane (CH) emission. To better understand the drivers of this change, we measured soil CH flux, environmental conditions, and belowground microbial community structure across primary forests, cattle pastures, and secondary forests in two Amazonian regions.

View Article and Find Full Text PDF

Biological nitrogen fixation can be an important source of nitrogen in tropical forests that serve as a major CO sink. Extensive deforestation of the Amazon is known to influence microbial communities and the biogeochemical cycles they mediate. However, it is unknown how diazotrophs (nitrogen-fixing microorganisms) respond to deforestation and subsequent ecosystem conversion to agriculture, as well as whether they can recover in secondary forests that are established after agriculture is abandoned.

View Article and Find Full Text PDF

Co-occurrence networks allow for the identification of potential associations among species, which may be important for understanding community assembly and ecosystem functions. We employed this strategy to examine prokaryotic co-occurrence patterns in the Amazon soils and the response of these patterns to land use change to pasture, with the hypothesis that altered microbial composition due to deforestation will mirror the co-occurrence patterns across prokaryotic taxa. In this study, we calculated Spearman correlations between operational taxonomic units (OTUs) as determined by 16S rRNA gene sequencing, and only robust correlations were considered for network construction (-0.

View Article and Find Full Text PDF

Deforestation in the Brazilian Amazon occurs at an alarming rate, which has broad effects on global greenhouse gas emissions, carbon storage, and biogeochemical cycles. In this study, soil metagenomes and metagenome-assembled genomes (MAGs) were analyzed for alterations to microbial community composition, functional groups, and putative physiology as it related to land-use change and tropical soil. A total of 28 MAGs were assembled encompassing 10 phyla, including both dominant and rare biosphere lineages.

View Article and Find Full Text PDF

Land use change is one of the greatest environmental impacts worldwide, especially to tropical forests. The Amazon rainforest has been subject to particularly high rates of land use change, primarily to cattle pasture. A commonly observed response to cattle pasture establishment in the Amazon is the conversion of soil from a methane sink in rainforest, to a methane source in pasture.

View Article and Find Full Text PDF

Members of the phylum Acidobacteria are among the most abundant soil bacteria on Earth, but little is known about their response to environmental changes. We asked how the relative abundance and biogeographic patterning of this phylum and its subgroups responded to forest-to-pasture conversion in soils of the western Brazilian Amazon. Pyrosequencing of 16S rRNA genes was employed to assess the abundance and composition of the Acidobacteria community across 54 soil samples taken using a spatially nested sampling scheme at the landscape level.

View Article and Find Full Text PDF

Ecological processes regulating soil carbon (C) and nitrogen (N) cycles are still poorly understood, especially in the world's largest agricultural frontier in Southern Amazonia. We analyzed soil parameters in samples from pristine rainforest and after land use change to pasture and crop fields, and correlated them with abundance of functional and phylogenetic marker genes (amoA, nirK, nirS, norB, nosZ, nifH, mcrA, pmoA, and 16S/18S rRNA). Additionally, we integrated these parameters using path analysis and multiple regressions.

View Article and Find Full Text PDF

The Amazon rainforest is well known for its rich plant and animal diversity, but its bacterial diversity is virtually unexplored. Due to ongoing and widespread deforestation followed by conversion to agriculture, there is an urgent need to quantify the soil biological diversity within this tropical ecosystem. Given the abundance of the phylum Verrucomicrobia in soils, we targeted this group to examine its response to forest-to-pasture conversion.

View Article and Find Full Text PDF

Active surfaces that form the basis for bacterial sensors for threat detection, food safety, or certain diagnostic applications rely on bacterial adhesion. However, bacteria capture from complex fluids on the active surfaces can be reduced by the competing adsorption of proteins and other large molecules. Such adsorption can also interfere with device performance.

View Article and Find Full Text PDF

This work examines how the antimicrobial (killing) activity of net-negative surfaces depends on the presentation of antimicrobial cationic functionality: distributed versus clustered, and flat clusters versus raised clusters. Specifically, the ability to kill Staphylococcus aureus by sparsely distributed 10 nm cationic nanoparticles, immobilized on a negative surface and backfilled with a PEG (polyethylene glycol) brush, was compared with that for a dense layer of the same immobilized nanoparticles. Additionally, sparsely distributed 10 nm poly-L-lysine (PLL) coils, adsorbed to a surface to produce flat cationic "patches" and backfilled with a PEG brush were compared to a saturated adsorbed layer of PLL.

View Article and Find Full Text PDF

Land use change in the Amazon rainforest alters the taxonomic structure of soil microbial communities, but whether it alters their functional gene composition is unknown. We used the highly parallel microarray technology GeoChip 4.0, which contains 83,992 probes specific for genes linked nutrient cycling and other processes, to evaluate how the diversity, abundance and similarity of the targeted genes responded to forest-to-pasture conversion.

View Article and Find Full Text PDF