Microbial reductive dechlorination is a key process in aquifers contaminated with chlorinated ethenes and results in a net mass reduction of organic pollutants. Biodegradation rates in the subsurface are temperature-dependent and may be enhanced by increased groundwater temperatures. This study explores the potential of combining the temperature increase from low-temperature Aquifer Thermal Energy Storage with In Situ Bioremediation (ATES-ISB).
View Article and Find Full Text PDFThis study advances a methodology to estimate effective apertures of fractures in glacial tills based on dye tracer infiltration tests and numerical simulations. The approach uses the visible penetration depth of the dye tracer along fracture flow paths as primary information to calculate effective fracture apertures. Further data used in the calculation are the dye tracer input concentration and retardation, the duration of the tracer injection, and the hydraulic gradient applied to control the infiltrating water fluxes.
View Article and Find Full Text PDFPoint sources with contaminants, such as chlorinated solvents, per- and polyfluoroalkyl substances (PFAS), or pesticides, are often located in low-permeability aquitards, where they can act as long-term sources and threaten underlying groundwater resources. We demonstrate the use of a 3D numerical model integrating comprehensive hydrogeological and contamination data to determine the contaminant mass discharge (CMD) from an aquitard into the underlying aquifer. A mature point source with a dissolved chlorinated solvent in a clayey till is used as an example.
View Article and Find Full Text PDFInterest in using contaminant mass discharge (CMD) for risk assessment of contaminated sites has increased over the years, as it accounts for the contaminant mass that is moving and posing a risk to water resources and receptors. The most common investigation of CMD involves a transect of multilevel wells; however, this is an expensive undertaking, and it is difficult to place it in the right position in a plume. Additionally, infrastructure at the site needs to be considered.
View Article and Find Full Text PDFLandfill biocovers are an efficient strategy for the mitigation of greenhouse gas emissions from landfills. A complex interplay between key physical and reactive processes occurs in biocovers and affects the transport of gas components. Therefore, numerical models can greatly help the understanding of these systems, their design and optimal operation.
View Article and Find Full Text PDFIntact soil columns can bridge the gap between field studies and idealized laboratory investigations of flow and transport in macropores and fractured media. However, the value of intact column studies is often hampered by shortcomings such as lack of column intactness, small column size, and column rim flow, which can cause serious artifacts and hamper system understanding. The flexible-wall pressurized large undisturbed column (LUC) method overcomes these limitations and is a valuable approach to analyze fluid flow and solute transport in macroporous and fractured geological formations.
View Article and Find Full Text PDFCharacterization of dense non-aqueous phase liquid (DNAPL) source zones in limestone aquifers/bedrock is essential to develop accurate site-specific conceptual models and perform risk assessment. Here innovative field methods were combined to improve determination of source zone architecture, hydrogeology and contaminant distribution. The FACT™ is a new technology and it was applied and tested at a contaminated site with a limestone aquifer, together with a number of existing methods including wire-line coring with core subsampling, FLUTe® transmissivity profiling and multilevel water sampling.
View Article and Find Full Text PDF