Publications by authors named "Klaus M Rathfelder"

A pilot-scale demonstration of surfactant-enhanced aquifer remediation (SEAR) was conducted during the summer of 2000 at the Bachman Road site in Oscoda, MI. Part two of this two-part paper describes results from partitioning and nonpartitioning tracer tests, SEAR operations, and post-treatment monitoring. For this field test, 68 400 L of an aqueous solution of 6% (wt) Tween 80 were injected to recover tetrachloroethene-nonaqueous phase liquid (PCE-DNAPL) from a shallow, unconfined aquifer.

View Article and Find Full Text PDF

A pilot-scale demonstration of surfactant-enhanced aquifer remediation (SEAR) was conducted to recover dense nonaqueous phase liquid (DNAPL) tetrachloroethene (PCE) from a sandy glacial outwash aquifer underlying a former dry cleaning facility at the Bachman Road site in Oscoda, MI. Part one of this two-part paper describes site characterization efforts and a comprehensive approach to SEAR test design, effectively integrating laboratory and modeling studies. Aquifer coring and drive point sampling suggested the presence of PCE-DNAPL in a zone beneath an occupied building.

View Article and Find Full Text PDF

Alcohol addition has been suggested for use in combination with surfactant flushing to enhance solubilization kinetics and permit density control of dense non-aqueous phase liquid (DNAPL)-laden surfactant plumes. This study examined the effects of adding ethanol (EtOH) to a 4% Tween 80 (polyoxyethylene (20) sorbitan monooleate) solution used to flush tetrachloroethene (PCE)-contaminated porous media. The influence of EtOH concentration, subsurface layering and scale on flushing solution delivery and PCE recovery was investigated through a combination of experimental and mathematical modeling studies.

View Article and Find Full Text PDF

Two-dimensional multiphase flow and transport simulators were refined and used to numerically investigate the entrapment and dissolution behavior of tetrachloroethylene (PCE) in heterogeneous porous media containing spatial variations in wettability. Measured hydraulic properties, residual saturations, and dissolution parameters were employed in these simulations. Entrapment was quantified using experimentally verified hydraulic property and residual saturation models that account for hysteresis and wettability variations.

View Article and Find Full Text PDF

The ability of a multiphase flow model to capture the migration behavior of chlorinated solvents under conditions of surfactant-facilitated interfacial tension (IFT) reduction is assessed through comparison of model predictions with observations from controlled laboratory experiments. Tetrachloroethene (PCE) was released in two-dimensional saturated systems, packed with sandy media that incorporated rectangular lenses of capillary contrast. Spatially uniform interfacial tension conditions were created in the tanks by pre-flushing the porous medium with either Milli Q water or an aqueous surfactant solution.

View Article and Find Full Text PDF