The mechanical characteristics of the extracellular environment are known to significantly influence cancer cell behavior in vivo and in vitro. The structural complexity and viscoelastic dynamics of the extracellular matrix (ECM) pose significant challenges in understanding its impact on cancer cells. Herein, we report distinct regulatory signatures in the invasion of different breast cancer cell lines into three-dimensional (3D) fibrillar collagen networks, caused by systematic modifications of the physical network properties.
View Article and Find Full Text PDFWe study time-reversal symmetry breaking in non-Hermitian fluctuating field theories with conserved dynamics, comprising the mesoscopic descriptions of a wide range of nonequilibrium phenomena. They exhibit continuous parity-time (PT) symmetry-breaking phase transitions to dynamical phases. For two concrete transition scenarios, exclusive to non-Hermitian dynamics, namely, oscillatory instabilities and critical exceptional points, a low-noise expansion exposes a pretransitional surge of the mesoscale (informatic) entropy production rate, inside the static phases.
View Article and Find Full Text PDFWe study the nonreciprocal Cahn-Hilliard model with thermal noise as a prototypical example of a generic class of non-Hermitian stochastic field theories, analyzed in two companion papers [Suchanek, Kroy, and Loos, Phys. Rev. Lett.
View Article and Find Full Text PDFPhys Rev Lett
December 2023
We study fluctuating field models with spontaneously emerging dynamical phases. We consider two typical transition scenarios associated with parity-time symmetry breaking: oscillatory instabilities and critical exceptional points. An analytical investigation of the low-noise regime reveals a drastic increase of the mesoscopic entropy production toward the transitions.
View Article and Find Full Text PDFWe numerically study the shear rheology of a binary mixture of soft active Brownian particles, from the fluid to the disordered solid regime. At low shear rates, we find a Newtonian regime, where a Green-Kubo relation with an effective temperature provides the linear viscosity. It is followed by a shear-thinning regime at high shear rates.
View Article and Find Full Text PDFPredicting transport rates of windblown sand is a central problem in aeolian research, with implications for climate, environmental, and planetary sciences. Though studied since the 1930s, the underlying many-body dynamics is still incompletely understood, as underscored by the recent empirical discovery of an unexpected third-root scaling in the particle-fluid density ratio. Here, by means of grain-scale simulations and analytical modeling, we elucidate how a complex coupling between grain-bed collisions and granular creep within the sand bed yields a dilatancy-enhanced bed erodibility.
View Article and Find Full Text PDFCollective states of inanimate particles self-assemble through physical interactions and thermal motion. Despite some phenomenological resemblance, including signatures of criticality, the autonomous dynamics that binds motile agents into flocks, herds, or swarms allows for much richer behavior. Low-dimensional models have hinted at the crucial role played in this respect by perceived information, decision-making, and feedback, implying that the corresponding interactions are inevitably retarded.
View Article and Find Full Text PDFRetardation between sensation and action is an inherent biological trait. Here we study its effect in the Vicsek model, which is a paradigmatic swarm model. We find that (1) a discrete time delay in the orientational interactions diminishes the ability of strongly aligned swarms to follow a leader and, in return, increases their stability against random orientation fluctuations; (2) both longer delays and higher speeds favor ballistic over diffusive spreading of information (orientation) through the swarm; (3) for short delays, the mean change in the total orientation (the order parameter) scales linearly in a small orientational bias of the leaders and inversely in the delay time, while its variance first increases and then saturates with increasing delays; and (4) the linear response breaks down when orientation conservation is broken.
View Article and Find Full Text PDFPhysical interactions generally respect certain symmetries, such as reciprocity and energy conservation, which survive in coarse-grained isothermal descriptions. Active many-body systems usually break such symmetries intrinsically, on the particle level, so that their collective behavior is often more naturally interpreted as a result of information exchange. Here we study numerically how information spreads from a "leader" particle through an initially aligned flock, described by the Vicsek model without noise.
View Article and Find Full Text PDFA wealth of chemical bonds and polymers have been studied with single-molecule force spectroscopy, usually by applying a force perpendicular to the anchoring surface. However, the direction-dependence of the bond strength lacks fundamental understanding. Here we establish stereographic force spectroscopy to study the single-bond strength for various pulling angles.
View Article and Find Full Text PDFLiving many-body systems often exhibit scale-free collective behavior reminiscent of thermal critical phenomena. But their mutual interactions are inevitably retarded due to information processing and delayed actuation. We numerically investigate the consequences for the finite-size scaling in the Vicsek model of motile active matter.
View Article and Find Full Text PDFAeolian sand transport is a major process shaping landscapes on Earth and on diverse celestial bodies. Conditions favoring bimodal sand transport, with fine-grain saltation driving coarse-grain reptation, give rise to the evolution of megaripples with a characteristic bimodal sand composition. Here, we derive a unified phase diagram for this special aeolian process and the ensuing nonequilibrium megaripple morphodynamics by means of a conceptually simple quantitative model, grounded in the grain-scale physics.
View Article and Find Full Text PDFThe colocalization of density modulations and particle polarization is a characteristic emergent feature of motile active matter in activity gradients. We employ the active-Brownian-particle model to derive precise analytical expressions for the density and polarization profiles of a single Janus-type swimmer in the vicinity of an abrupt activity step. Our analysis allows for an optional (but not necessary) orientation-dependent propulsion speed, as often employed in force-free particle steering.
View Article and Find Full Text PDFThe interactions of autonomous microswimmers play an important role for the formation of collective states of motile active matter. We study them in detail for the common microswimmer-design of two-faced Janus spheres with hemispheres made from different materials. Their chemical and physical surface properties may be tailored to fine-tune their mutual attractive, repulsive or aligning behavior.
View Article and Find Full Text PDFActive-particle suspensions exhibit distinct polarization-density patterns in activity landscapes, even without anisotropic particle interactions. Such polarization without alignment forces is at work in motility-induced phase separation and betrays intrinsic microscopic activity to mesoscale observers. Using stable long-term confinement of a single thermophoretic microswimmer in a dedicated force-free particle trap, we examine the polarized interfacial layer at a motility step and confirm that it does not exert pressure onto the bulk.
View Article and Find Full Text PDFSingle-molecule force spectroscopy data are conventionally analyzed using a schematic model, wherein a molecular bond is represented as a virtual particle diffusing in a one-dimensional free-energy landscape. However, this simple and efficient approach is unable to account for the "anomalous" bond-breaking kinetics increasingly observed in force spectroscopy experiments and simulations, e.g.
View Article and Find Full Text PDFWe present a simple thermodynamically consistent method for solving time-dependent Fokker-Planck equations (FPE) for overdamped stochastic processes, also known as Smoluchowski equations. It yields both transition and steady-state behavior and allows for computations of moment-generating and large-deviation functions of observables defined along stochastic trajectories, such as the fluctuating particle current, heat, and work. The key strategy is to approximate the FPE by a master equation with transition rates in configuration space that obey a local detailed balance condition for arbitrary discretization.
View Article and Find Full Text PDFExtracellular matrix stiffening of breast tissues has been clinically correlated with malignant transformation and poor prognosis. An increase of collagen fibril diameter and lysyl-oxidase mediated crosslinking has been observed in advanced tumor stages. Many current reports suggest that the local mechanical properties of single fibrillar components dominantly regulate cancer cell behavior.
View Article and Find Full Text PDFThe mesoscale structure of aeolian sand transport determines a variety of natural phenomena studied in planetary and Earth science. We analyze it theoretically beyond the mean-field level, based on the grain-scale transport kinetics and splash statistics. A coarse-grained analytical model is proposed and verified by numerical simulations resolving individual grain trajectories.
View Article and Find Full Text PDFWe derive the hydrodynamic equations of motion for a fluid of active particles described by underdamped Langevin equations that reduce to the active-Brownian-particle model, in the overdamped limit. The contraction into the hydrodynamic description is performed by locally averaging the particle dynamics with the nonequilibrium many-particle probability density, whose formal expression is found in the physically relevant limit of high friction through a multiple-time-scale analysis. This approach permits us to identify the conditions under which self-propulsion can be subsumed into the fluid stress tensor and thus to define systematically and unambiguously the local pressure of the active fluid.
View Article and Find Full Text PDFThe collision of a spherical grain with a granular bed is commonly parametrized by the splash function, which provides the velocity of the rebounding grain and the velocity distribution and number of ejected grains. Starting from elementary geometric considerations and physical principles, like momentum conservation and energy dissipation in inelastic pair collisions, we derive a rebound parametrization for the collision of a spherical grain with a granular bed. Combined with a recently proposed energy-splitting model [Ho et al.
View Article and Find Full Text PDFWe set up a mesoscopic theory for interacting Brownian particles embedded in a nonequilibrium environment, starting from the microscopic interacting many-body theory. Using nonequilibrium linear-response theory, we characterize the effective dynamical interactions on the mesoscopic scale and the statistics of the nonequilibrium environmental noise, arising upon integrating out the fast degrees of freedom. As hallmarks of nonequilibrium, the breakdown of the fluctuation-dissipation and action-reaction relations for Brownian degrees of freedom is exemplified with two prototypical models for the environment, namely active Brownian particles and stirred colloids.
View Article and Find Full Text PDFSymmetries constrain dynamics. We test this fundamental physical principle, experimentally and by molecular dynamics simulations, for a hot Janus swimmer operating far from thermal equilibrium. Our results establish scalar and vectorial steady-state fluctuation theorems and a thermodynamic uncertainty relation that link the fluctuating particle current to its entropy production at an effective temperature.
View Article and Find Full Text PDF