Injuries of the peripheral nerve in the early post-natal period are known to cause massive loss in the motoneuron pools of the spinal cord. However, the exact time frame and extent of motoneuron death in the cervical spinal cord after a brachial plexus lesion and the altered course after neuroprotection with different trophic factors is not known. In the present study, the time course of induced motoneuron death after a neonatal peripheral nerve injury and the effect of GDNF was investigated over a 4 week time period to determine the window of opportunity for possible therapeutic interventions in obstetrical plexus palsy.
View Article and Find Full Text PDFPurpose: The successful treatment of painful neuromas remains a difficult goal to attain. In this report we explore the feasibility of neuroma prevention by insertion of the proximal end of a nerve through an end-to-side neurorraphy into an adjacent mixed nerve to provide a pathway and target for axons deprived of their end organ.
Methods: Experiments were performed on a total of twenty 250-g Sprague-Dawley rats.
Motoneurons of the neonate rat respond to proximal axonal injury with morphologic and functional changes and ultimately with neuronal death. Recent studies showed that both glial cell-line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) reduce induced degeneration of motoneurons after axotomy and avulsion. Whether rescued motoneurons are functionally intact has been argued.
View Article and Find Full Text PDF