Publications by authors named "Klaus Kerpen"

Rationale: The analysis of nitrogen isotopes in aqueous dissolved nitrate is an effective method for identifying pollution sources and offers the potential to study the nitrogen cycle. However, the measurement of nitrogen isotope ratios of nitrate still requires extensive sample preparation or derivatization.

Methods: In this study, a modified commercially available liquid chromatography-isotope ratio mass spectrometer (LC-IRMS) interface is presented that enables automated measurement of δN signatures from nitrate by online reduction of nitrate in two consecutive steps.

View Article and Find Full Text PDF

Mechanistic investigations of an environmentally friendly and easy-to-implement oxidation method in the remediation of contaminated anoxic waters, i.e. groundwater, through the sole use of oxygen for the oxygen-induced oxidation of pollutants were the focus of this work.

View Article and Find Full Text PDF

Natural organic matter (NOM) is a complex mixture of heterogeneous compounds with varying functional groups and molecular sizes. Understanding the impact of NOM on the generation of photochemically produced reactive intermediates (PPRIs) and their potential inhibitory effects on photolysis has remained challenging due to the variations in the reactivities and concentrations of these functional groups. To address this gap, tannic acid (TA), gallic acid (GA), catechin (CAT), and tryptophan (Trp), were chosen as potential substitutes for NOM.

View Article and Find Full Text PDF

The stability of graphene structure in sulfur-doped graphene catalyst is demonstrated to be a key aspect during the ozonation process. Enhancing the stability of the sulfur-doped graphene structure is therefore important to improve its catalytic activity during the ozonation process. However, this has remained a challenge so far.

View Article and Find Full Text PDF

There are many toxics, such as aromatic amines (AAs), in cigarette butts (CBs). As CBs are the most abundant litter worldwide, these chemicals may leach into water bodies. In the present work, for the first time, the levels of AAs leachates from CBs in distilled water (DW) and river water (RW) samples were evaluated at different exposure times ranging from 15 min to 30 days.

View Article and Find Full Text PDF

A continuously operating system for monitoring groundwater contamination by aromatic VOCs has been developed. For this purpose, a novel gas-water separation unit was to be used in combination with APPI-FAIMS. The gas-water separation unit successfully reduced the humidity in the sample flow to ≤1.

View Article and Find Full Text PDF

Correction for 'Determining the role of redox-active materials during laser-induced water decomposition' by Mark-Robert Kalus et al., Phys. Chem.

View Article and Find Full Text PDF

Laser ablation in liquids (LAL) drives the decomposition of the liquid inducing the formation of a large number of different redox equivalents and gases. This not only leads to shielding effects and a decrease of the nanoparticle (NP) productivity but also can directly affect the NP properties such as the oxidation degree. In this study, we demonstrate that liquid decomposition during laser ablation in water is triggered by the redox activity of the 7 different bulk materials used; Au, Pt, Ag, Cu, Fe, Ti and Al, as well as by the reactivity of water with the plasma.

View Article and Find Full Text PDF

Direct inlet probe (DIP) was used as an introduction and a pre-separation step for atmospheric pressure photoionization time-of-flight ion mobility spectrometry (APPI-TOF-IMS) for the first time. IMS is an analytical technique used to separate and identify ionized molecules in the gas phase and under atmospheric pressure based on their mobility. The utilization of DIP prior to IMS gives the possibility to introduce the analytes into the gas phase and provides an additional separation based on their vapor pressure.

View Article and Find Full Text PDF

The Fenton reaction describes the reaction of Fe(II) with hydrogen peroxide. Several researchers proposed the formation of an intermediate iron-peroxo complex but experimental evidence for its existence is still missing. The present study investigates formation and lifetime of this intermediate at various conditions such as different Fe(II)-concentrations, absence vs presence of a hydroxyl radical scavenger (dimethyl sulfoxide, DMSO), and different pH values.

View Article and Find Full Text PDF

A laser-induced fluorescence (LIF) was used as a complimentary detection system for time-of-flight ion mobility spectrometry (TOF-IMS). A LIF detection system is potentially faster than a conventional electrometer detector and can provide additional (to usual for IMS drift time) analytical information, namely wavelength of fluorescence maxima and fluorescence lifetime. Therefore, better discrimination ability can be expected.

View Article and Find Full Text PDF

X-ray was utilized as an ionization source for differential ion mobility spectrometry (DMS) for the first time. The utilization of this ionization source increases the potential of DMS system for on-site based applications. The influence of experimental parameters (e.

View Article and Find Full Text PDF

A low-temperature plasma (LTP) was used as an ionization source for differential ion mobility spectrometry (DMS) for the first time. This ionization source enhances the potential of DMS as a miniaturized system for on-site rapid monitoring. The effects of experimental parameters (e.

View Article and Find Full Text PDF

The feasibility of an electrospray coupled with a (63)Ni-differential ion mobility spectrometer (DMS) for the analysis of water samples was proven on examples of 2-hexanone, fluoroacetamide, l-nicotine and 1-phenyl-2-thiourea water solutions. The model substances were selected in order to cover the vapor pressure range of 0.3-1467 Pa.

View Article and Find Full Text PDF