The application of distributed fiber optic strain and temperature measurement can be utilized to address a multitude of measurement tasks across a diverse range of fields, particularly in the context of structural health monitoring in the domains of building construction, civil engineering, and special foundation engineering. However, a comprehensive understanding of the influences on the measurement method and the sensors is essential to prevent misinterpretations or measurement deviations. In this context, this study investigated the effects of moisture exposure, including various salt solutions and a high pH value, on a distributed strain measurement using Rayleigh backscattering.
View Article and Find Full Text PDFDistributed fiber optic strain measurement techniques have become increasingly important in recent years, especially in the field of structural health monitoring of reinforced concrete structures. Numerous publications show the various monitoring possibilities from bridges to special heavy structures. The present study is intended to demonstrate the possibilities, but also the challenges, of distributed fiber optic strain measurement in reinforced concrete structures.
View Article and Find Full Text PDFThe building sector accounts for approx. 40% of total energy consumption and approx. 36% of all greenhouse gas emissions in Europe.
View Article and Find Full Text PDFAlkali-activated cement (AAC) is an alternative cement that has been increasingly studied over the past decades mainly because of its environmental benefits. However, most studies are on heat-cured AACs and are focused on mechanical properties. There is a lack of research on the fresh properties of ambient-cured AAC systems.
View Article and Find Full Text PDFAlkali-activated cement (AAC) is a promising binder that replaces ordinary Portland cement (OPC). In this study, the development of setting time and strength of AAC mixes were studied using ultrasonic testing method. The test results were compared with traditional Vicat setting time and compressive and flexural strengths.
View Article and Find Full Text PDFThe confinement of reinforced concrete (RC) compression members by fiber-reinforced polymers (FRPs) is an effective measure for the strengthening and retrofitting of existing structures. Thus far, extensive research on the stress-strain behavior and ultimate limit state design of FRP-confined concrete has been conducted, leading to various design models. However, these models are significantly different when compared to one another.
View Article and Find Full Text PDFReinforced concrete (RC) columns are often placed under confinement to increase their strength and ductility. Carbon fiber reinforced polymer (CFRP) materials have recently been recognized as favorable confinement systems. At present, a number of national standards and codes dedicated to the design of concrete components strengthened with CFRP in general and CFRP confinement in particular are available.
View Article and Find Full Text PDF