The formation of highly ordered capillaries in alginate gels is due to a dissipative convective process resulting from opposing diffusion gradients and friction. Ceramic membranes with an anisotropic pore structure have been gained from this self-organization process by incorporating inorganic particles into the gel matrix, followed by subsequent ion exchange, drying, and sintering. The aim of this study was to overcome existing preparative deficiencies and to optimize the capillary structure and surface properties with respect to specific technical applications.
View Article and Find Full Text PDFAppropriate target reinnervation and functional recovery after spinal cord injury depend on longitudinally directed regrowth of transected axons. To assess the capacity to promote directed axon regeneration, alginate-based highly anisotropic capillary hydrogels (ACH) were introduced into an axon outgrowth assay in vitro and adult rat spinal cord lesions in vivo. In an entorhino-hippocampal slice culture model, alginate-based scaffolds elicit highly oriented linear axon regrowth and appropriate target neuron reinnervation.
View Article and Find Full Text PDFTo suppress the reactivity of nanoscaled non-oxidic powders of titanium nitride (TiN) and silicon carbonitride (SiCN) against hydrolysis and oxidation, chemical surface modification with nitrogen-containing surfactants was investigated. Among these surfactants, long-chain primary amines, ethylenediamines, guanidines, nitriles, isocyanates, and succinimides were examined. Thermogravimetry, elemental analysis, and behavior against the water-vapor adsorption of the modified particles were used as methods to estimate the protective capacity of the organic coating material.
View Article and Find Full Text PDFThe polypeptide release factor gene, eRF1, of Blepharisma japonicum (Bj-eRF1) was cloned and sequenced. Its coding region was 1314 base pairs and encodes a protein of 437 amino acids. The cloned gene was expressed in Escherichia coli and the recombinant Bj-eRF1 polypeptide was purified by Ni2+-nitrilotriacetic acid agarose and Superose12 chromatography.
View Article and Find Full Text PDF