Publications by authors named "Klaus Hamacher"

Article Synopsis
  • Nuclear Medicine imaging is crucial for evaluating thyroid abnormalities, distinguishing between high-risk 'cold' nodules and low-risk 'hot' nodules based on radiotracer uptake patterns.
  • The quality of nuclear images often results in subtle density changes that may be overlooked, but a computer-aided detection (CAD) system using pixel density thresholds can enhance the identification of nodules.
  • In tests with 22 nodules, both 'hot' and 'cold', the CAD approach showed strong alignment with expert radiologists' assessments, indicating its potential effectiveness in improving diagnostic accuracy.
View Article and Find Full Text PDF

Purpose: To estimate the peak radiation skin doses for interventional radiology cases performed at a cancer center, identify procedure types likely to result in skin doses exceeding the American College of Radiology's 3 Gy follow-up level, and determine a kerma area product (P(KA)) for use in monitoring.

Materials And Methods: A single-center retrospective study was performed to estimate doses from consecutive procedures performed during 2006. Of 6,598 procedures, 3,925 (60%) had P(KA) recorded and were included.

View Article and Find Full Text PDF

We used diffusion tensor imaging (DTI) to study 2 patients with traumatic brain injury. The first patient recovered reliable expressive language after 19 years in a minimally conscious state (MCS); the second had remained in MCS for 6 years. Comparison of white matter integrity in the patients and 20 normal subjects using histograms of apparent diffusion constants and diffusion anisotropy identified widespread altered diffusivity and decreased anisotropy in the damaged white matter.

View Article and Find Full Text PDF

The recently developed GATE (GEANT4 application for tomographic emission) Monte Carlo package, designed to simulate positron emission tomography (PET) and single photon emission computed tomography (SPECT) scanners, provides the ability to model and account for the effects of photon noncollinearity, off-axis detector penetration, detector size and response, positron range, photon scatter, and patient motion on the resolution and quality of PET images. The objective of this study is to validate a model within GATE of the General Electric (GE) Advance/Discovery Light Speed (LS) PET scanner. Our three-dimensional PET simulation model of the scanner consists of 12 096 detectors grouped into blocks, which are grouped into modules as per the vendor's specifications.

View Article and Find Full Text PDF

Unlabelled: In radioimmunotherapy, myelotoxicity due to bone marrow radiation-absorbed dose is the predominant factor and frequently is the dose-limiting factor that determines the maximum tolerated dose (MTD). With (90)Y- and (131)I-labeled monoclonal antibodies, it has been reported that myelotoxicity cannot be predicted on the basis of the amount of radioactive dose administered or the bone marrow radiation-absorbed dose (BMrad), estimated using blood radioactivity concentration. As part of a phase I dose-escalation study in patients with prostate cancer with (90)Y-DOTA-J591 (DOTA = 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) ((90)Y-J591) and (177)Lu-DOTA-J591 ((177)Lu-J591), we evaluated the potential value of several factors in predicting myelotoxicity.

View Article and Find Full Text PDF

Unlabelled: 111In-Labeled antibodies and peptides have been routinely used as chemical and biologic surrogates for 90Y-labeled therapeutic agents. However, recent studies have shown that there are significant differences in biodistribution between 111In- and 90Y-labeled agents. Yttrium and lutetium metals favor the +3 oxidation state, similar to indium, but there are minor differences in the solution and coordination chemistries among these metals.

View Article and Find Full Text PDF

Determination of the immunoreactive fraction (IF) of radiolabeled monoclonal antibodies (MAb) is essential to the understanding of the effects of radiolabeling and subsequent target-specific tumor localization. There has been generally no accepted method of determining the IF of MAbs. The conventional method is based on a radioimmunoassay technique in which the fraction of radiolabeled MAb bound to antigen under conditions of "antigen excess" is determined.

View Article and Find Full Text PDF

Unlike beta particle-emitting isotopes, alpha emitters can selectively kill individual cancer cells with a single atomic decay. HuM195, a humanized anti-CD33 monoclonal antibody, specifically targets myeloid leukemia cells and has activity against minimal disease. When labeled with the beta-emitters (131)I and (90)Y, HuM195 can eliminate large leukemic burdens in patients, but it produces prolonged myelosuppression requiring hematopoietic stem cell transplantation at high doses.

View Article and Find Full Text PDF