Stress-induced birefringence leads to losses in solid-state laser resonators and amplifiers with polarized output beams. A model of stress-induced birefringence in thin disks is presented, as well as measurements of stress-induced birefringence in a thin disk in a multi-kilowatt oscillator. A full-Stokes imaging polarimeter was developed to enable fast and accurate polarimetric measurements.
View Article and Find Full Text PDFWe report on the successful demonstration of second and third harmonic conversion of a high pulse energy, high average power 1030 nm diode pumped Yb-doped yttrium aluminum garnet (Yb:YAG) nanosecond pulsed laser in a large aperture lithium triborate (LBO) crystal. We demonstrated generation of 59.7 J at 10 Hz (597 W) at 515 nm (second harmonic) and of 65.
View Article and Find Full Text PDFWe report on frequency doubling of high-energy, high-repetition-rate ns pulses from a cryogenically gas cooled, multi-slab Yb:YAG laser system, using a type-I phase-matched lithium triborate (LBO) crystal. Pulse energy of 4.3 J was extracted at 515 nm for a fundamental input of 5.
View Article and Find Full Text PDFWe present developments in the control of the temporal pulse shape of nanosecond lasers. An active feedback loop between a regenerative amplified laser's output and input was controlled in order to obtain the desired pulse shape. We used several algorithms to achieve this and the differences caused by the target pulse shape and duration are compared.
View Article and Find Full Text PDFWe report on the successful demonstration of a 100 J-level, diode pumped solid state laser based on cryogenic gas cooled, multi-slab ceramic Yb:YAG amplifier technology. When operated at 175 K, the system delivered a pulse energy of 107 J at a 1 Hz repetition rate and 10 ns pulse duration, pumped by 506 J of diode energy at 940 nm, corresponding to an optical-to-optical efficiency of 21%. To the best of our knowledge, this represents the highest energy obtained from a nanosecond pulsed diode pumped solid state laser.
View Article and Find Full Text PDFThe Diode Pumped Optical Laser for Experiments (DiPOLE) project at the Central Laser Facility aims to develop a scalable, efficient high pulse energy diode pumped laser amplifier system based on cryogenic gas cooled, multi-slab ceramic Yb:YAG technology. We present recent results obtained from a scaled down prototype laser system designed for operation at 10 Hz pulse repetition rate. At 140 K, the system generated 10.
View Article and Find Full Text PDFTemperature dependent absorption and emission cross-sections of 5 at% Yb(3+) doped yttrium lanthanum oxide (Yb:YLO) ceramic between 80K and 300 K are presented. In addition, we report on the first demonstration of ns pulse amplification in Yb:YLO ceramic. A pulse energy of 102 mJ was extracted from a multi-pass amplifier setup.
View Article and Find Full Text PDFWe report on the first demonstration of a diode-pumped, gas cooled, cryogenic multislab Yb:YAG amplifier. The performance was characterized over a temperature range from 88 to 175 K. A maximum small-signal single-pass longitudinal gain of 11.
View Article and Find Full Text PDFWe report on an experimental study of the "coherent" contrast feature that frequently appears in petawatt(PW)-class laser pulses as an exponentially-rising pedestal within a few tens of picoseconds of the compressed pulse. We show that scattering from the diffraction gratings in the stretcher is the principal source of this feature. Replacing the gratings by new, higher-quality components resulted in an order-of-magnitude reduction in the intensity of the pedestal.
View Article and Find Full Text PDFWe have developed a femtosecond high-intensity laser system that combines both Ti:sapphire chirped-pulse amplification (CPA) and optical parametric CPA (OPCPA) techniques and produces more than 30 J broadband output energy, indicating the potential for achieving peak powers in excess of 500 TW. With a cleaned high-energy seeded OPCPA preamplifier as a front end in the system, for the compressed pulse without pumping the final amplifier, we found that the temporal contrast in this system exceeds 10(10) on the subnanosecond time scales, and is near 10(12) on the nanosecond time scale prior to the peak of the main femtosecond pulse. Using diffractive optical elements for beam homogenization of a 100 J level high-energy Nd:glass green pump laser in a Ti:sapphire final amplifier, we have successfully generated broadband high-energy output with a near-perfect top-hat-like intensity distribution.
View Article and Find Full Text PDFThe energy required to generate ultrashort pulses with petawatt peak power from a Ti:sapphire laser system is a few tens of joules. To achieve this, the final amplifier must have a gain region of around 5 cm diameter that is uniformly pumped at high fluence. The high level of amplified spontaneous emission (ASE) in such an amplifier will seriously degrade its performance unless care is taken to minimise the transverse gain and the internal reflections from the crystal edges.
View Article and Find Full Text PDFA gain-switched, single-frequency titanium-sapphire laser for atmospheric humidity measurements using the differential absorption lidar technique operating in the 820 nm wavelength region is described. The laser is pumped by a frequency-doubled, flashlamp-pumped Nd:YAG laser at a repetition rate of 50 Hz and injection seeded by two external-cavity-diode lasers. The system yields pulses with an energy of 15 mJ and high spectral purity.
View Article and Find Full Text PDF