Publications by authors named "Klaus Erixon"

Bi-functional alkylating agents that cause crosslinks are commonly used in chemotherapy. However, there is no conclusive knowledge for human cells regarding the number of induced interstrand crosslinks (ICLs) and the unhooking rate when the lesion is removed from one of the DNA strand. Using a newly developed method, we quantified the number of induced ICLs for the five furocoumarins; psoralen, 5-methoxypsoralen, 8-methoxypsoralen, tri-methoxypsoralen and angelicin.

View Article and Find Full Text PDF

The aim of this study was to investigate the relative involvement of three major DNA repair pathways, i.e., non-homologous end joining (NHEJ), homologous recombination (HRR) and base excision (BER) in repair of DNA lesions of different complexity induced by low- or high-LET radiation with emphasis on the contribution of the indirect effect of radiation for these radiation qualities.

View Article and Find Full Text PDF

DNA interstrand crosslinks (ICLs) are highly toxic lesions that covalently link both strands of DNA and distort the DNA helix. Crosslinking agents have been shown to stall DNA replication and failure to repair ICL lesions before encountered by replication forks may induce severe DNA damage. Most knowledge of the ICL repair process has been revealed from studies in bacteria and cell extracts.

View Article and Find Full Text PDF

Ultraviolet (UV)-induced DNA damage causes an efficient block of elongating replication forks. The checkpoint kinase, CHK1 has been shown to stabilize replication forks following hydroxyurea treatment. Therefore, we wanted to test if the increased UV sensitivity caused by the unspecific kinase inhibitor caffeine--inhibiting ATM and ATR amongst other kinases--is explained by inability to activate the CHK1 kinase to stabilize replicative structures.

View Article and Find Full Text PDF

CK2 phosphorylates the scaffold protein XRCC1, which is required for efficient DNA single-strand break (SSB) repair. Here, we express an XRCC1 protein (XRCC1(ckm)) that cannot be phosphorylated by CK2 in XRCC1 mutated EM9 cells and show that the role of this post-translational modification gives distinct phenotypes in SSB repair and base excision repair (BER). Interestingly, we find that fewer SSBs are formed during BER after treatment with the alkylating agent dimethyl sulfate (DMS) in EM9 cells expressing XRCC1(ckm) (CKM cells) or following inhibition with the CK2 inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT).

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAH) are an important class of environmental contaminants many of which require metabolic activation to DNA-reactive bay or fjord region diolepoxides (DE) in order to exert their mutagenic and carcinogenic effects. In this study, the mutagenicity of the bay region diolepoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (±)-anti-1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydrodibenzo[a,h]anthracene (DBADE) and the fjord region diolepoxides (±)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]-pyrene (DBPDE) and (±)-anti-3,4-dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]-phenanthrene (BPhDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. The (32)P-postlabelling assay was applied to analyze DNA adduct levels and the Hprt gene mutation assay for monitoring mutations.

View Article and Find Full Text PDF

Restarting stalled replication forks is vital to avoid fatal replication errors. Previously, it was demonstrated that hydroxyurea-stalled replication forks rescue replication either by an active restart mechanism or by new origin firing. To our surprise, using the DNA fibre assay, we only detect a slightly reduced fork speed on a UV-damaged template during the first hour after UV exposure, and no evidence for persistent replication fork arrest.

View Article and Find Full Text PDF

Base excision repair (BER) represents the most important repair pathway of endogenous DNA lesions. Initially, a base damage is recognized, excised and a DNA single-strand break (SSB) intermediate forms. The SSB is then ligated, a process that employs proteins also involved in SSB repair, e.

View Article and Find Full Text PDF

The Y family DNA polymerase Rev1 has been proposed to play a regulatory role in the replication of damaged templates. To elucidate the mechanism by which Rev1 promotes DNA damage bypass, we have analyzed the progression of replication on UV light-damaged DNA in mouse embryonic fibroblasts that contain a defined deletion in the N-terminal BRCT domain of Rev1 or that are deficient for Rev1. We provide evidence that Rev1 plays a coordinating role in two modes of DNA damage bypass, i.

View Article and Find Full Text PDF

UVA generates low levels of cyclobutane pyrimidine dimers (CPDs). Here we asked the question whether CPDs could fully explain the level of mutations induced by UVA. Relative mutagenicities of UVA and UVC were calculated at equal levels of CPDs in cell lines, deficient in different aspects of repair.

View Article and Find Full Text PDF

Mutations induced by polycyclic aromatic hydrocarbons (PAH) are expected to be produced when error-prone DNA replication occurs across unrepaired DNA lesions formed by reactive PAH metabolites such as diol epoxides. The mutagenicity of the two PAH-diol epoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (+/-)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. We applied the (32)P-postlabelling assay to analyze adduct levels and the hprt gene mutation assay for monitoring mutations.

View Article and Find Full Text PDF

The ability to bypass DNA lesions encountered during replication is important in order to maintain cell viability and avoid genomic instability. Exposure of mammalian cells to UV-irradiation induces the formation of DNA lesions that stall replication forks. In order to restore replication, different bypass mechanisms are operating, previously named post-replication repair.

View Article and Find Full Text PDF

Homologous recombination (HR) deficient cells are sensitive to methyl methanesulfonate (MMS). HR is usually involved in the repair of DNA double-strand breaks (DSBs) in Saccharomyces cerevisiae implying that MMS somehow induces DSBs in vivo. Indeed there is evidence, based on pulsed-field gel electrophoresis (PFGE), that MMS causes DNA fragmentation.

View Article and Find Full Text PDF

Glycidamide (GA)-induced mutagenesis in mammalian cells is not very well understood. Here, we investigated mutagenicity and DNA repair of GA-induced adducts utilizing Chinese hamster cell lines deficient in base excision repair (BER), nucleotide excision repair (NER) or homologous recombination (HR) in comparison to parent wild-type cells. We used the DRAG assay in order to map pathways involved in the repair of GA-induced DNA lesions.

View Article and Find Full Text PDF

The capacity to rescue stalled replication forks (RFs) is important for the maintenance of cell viability and genome integrity. Here, we have developed a novel method for monitoring RF progression and the influence of DNA lesions on this process. The method is based on the principle that each RF is expected to be associated with a pair of single-stranded ends, which can be analyzed by employing strand separation in alkali.

View Article and Find Full Text PDF

The DRAG test is a rapid high-throughput screening assay for detection of repairable adducts by growth inhibition of Chinese hamster ovary cells (CHO) characterized by different defects in DNA repair. A more pronounced growth inhibition caused by a certain DNA-reactive substance in a repair-deficient cell line (EM9, UV4 and UV5) as compared to wild-type cells (AA8) is interpreted as a consequence of their inability to repair induced DNA lesions. Thus, the use of such cell lines in the DRAG test may provide information of the type of DNA lesions induced by a certain genotoxic substance.

View Article and Find Full Text PDF

Homologous recombination (HR) and nonhomologous end joining (NHEJ) play overlapping roles in repair of DNA double-strand breaks (DSBs) generated during the S phase of the cell cycle. Here, we characterized the involvement of HR and NHEJ in the rescue of DNA replication forks arrested or slowed by treatment of hamster cells with hydroxyurea or thymidine. We show that the arrest of replication with hydroxyurea generates DNA fragmentation as a consequence of the formation of DSBs at newly replicated DNA.

View Article and Find Full Text PDF