Publications by authors named "Klaus Erhard"

Purpose: The purpose of this study was to investigate the feasibility of gadolinium-K-edge-angiography (angio-Gd-K-edge) with gadolinium-based contrast agents (GBCAs) as obtained with spectral photon counting CT (SPCCT) in atherosclerotic rabbits.

Materials And Methods: Seven atherosclerotic rabbits underwent angio-SPCCT acquisitions with two GBCAs, with similar intravenous injection protocol. Conventional and angio-Gd-K-edge images were reconstructed with the same parameters.

View Article and Find Full Text PDF

Objectives: To evaluate the quality of virtual monochromatic images (VMIs) from spectral photon-counting CT (SPCCT) and two energy-integrating detector dual-energy CT (EID-DECT) scanners from the same manufacturer, for the coronary lumen.

Methods: A 21-cm section of the Mercury v4.0 phantom was scanned using a cardiac CT protocol.

View Article and Find Full Text PDF

Spectral photon-counting computed tomography (SPCCT) technology holds great promise for becoming the next generation of computed tomography (CT) systems. Its technical characteristics have many advantages over conventional CT imaging. For example, SPCCT provides better spatial resolution, greater dose efficiency for ultra-low-dose and low-dose protocols, and tissue contrast superior to that of conventional CT.

View Article and Find Full Text PDF

Background Spatial resolution, soft-tissue contrast, and dose-efficient capabilities of photon-counting CT (PCCT) potentially allow a better quality and diagnostic confidence of coronary CT angiography (CCTA) in comparison to conventional CT. Purpose To compare the quality of CCTA scans obtained with a clinical prototype PCCT system and an energy-integrating detector (EID) dual-layer CT (DLCT) system. Materials and Methods In this prospective board-approved study with informed consent, participants with coronary artery disease underwent retrospective electrocardiographically gated CCTA with both systems after injection of 65-75 mL of 400 mg/mL iodinated contrast agent at 5 mL/sec.

View Article and Find Full Text PDF

Aims: To evaluate spectral photon-counting CT's (SPCCT) objective image quality characteristics in vitro, compared with standard-of-care energy-integrating-detector (EID) CT.

Methods: We scanned a thorax phantom with a coronary artery module at 10 mGy on a prototype SPCCT and a clinical dual-layer EID-CT under various conditions of simulated patient size (small, medium, and large). We used filtered back-projection with a soft-tissue kernel.

View Article and Find Full Text PDF

Objectives: The aim of this study is to compare the image quality of in vivo coronary stents between an energy integrating detectors dual-layer computed tomography (EID-DLCT) and a clinical prototype of spectral photon counting computed tomography (SPCCT).

Materials And Methods: In January to June 2021, consecutive patients with coronary stents were prospectively enrolled to undergo a coronary computed tomography (CT) with an EID-DLCT (IQon, Philips) and an SPCCT (Philips). The study was approved by the local ethical committee and patients signed an informed consent.

View Article and Find Full Text PDF

Spectral photon counting computed tomography (SPCCT) is an emerging medical imaging technology. SPCCT scanners record the energy of incident photons, which allows specific detection of contrast agents due to measurement of their characteristic X-ray attenuation profiles. This approach is known as K-edge imaging.

View Article and Find Full Text PDF

Purpose: To evaluate a method for measuring breast density using photon-counting spectral mammography. Breast density is an indicator of breast cancer risk and diagnostic accuracy in mammography, and can be used as input to personalized screening, treatment monitoring and dose estimation.

Methods: The measurement method employs the spectral difference in x-ray attenuation between adipose and fibro-glandular tissue, and does not rely on any a priori information.

View Article and Find Full Text PDF

Objectives: Round lesions are a common mammographic finding, which can contribute more than 20% of overall recalls at screening. Discrimination of cystic fluid from solid tissue by spectral x-ray imaging has been demonstrated in specimen experiments. This work translates these results into a clinical pilot study to investigate the feasibility of discriminating cystic from solid lesions using spectral mammography.

View Article and Find Full Text PDF