Publications by authors named "Klaus Eckstein"

Nanoscale semiconductors with isolated spin impurities have been touted as promising materials for their potential use at the intersection of quantum, spin, and information technologies. Electron paramagnetic resonance (EPR) studies of spins in semiconducting carbon nanotubes have overwhelmingly focused on spins more strongly localized by sp3-type lattice defects. However, the creation of such impurities is irreversible and requires specific reactions to generate them.

View Article and Find Full Text PDF

We report the development of a new spectroscopic scheme, coherent two-dimensional (2D) electronic spectroelectrochemistry. Conventional 2D electronic spectroscopy has become well established to investigate molecular energy transfer, charge transfer, or structural dynamics with femtosecond time resolution following electronic excitation, providing frequency resolution for both the excitation and the detection step. Here we combine this method with electrochemistry in a flow cell.

View Article and Find Full Text PDF

Doping by chemical or physical means is key for the development of future semiconductor technologies. Ideally, charge carriers should be able to move freely in a homogeneous environment. Here, we report on evidence suggesting that excess carriers in electrochemically p-doped semiconducting single-wall carbon nanotubes (s-SWNTs) become localized, most likely due to poorly screened Coulomb interactions with counterions in the Helmholtz layer.

View Article and Find Full Text PDF