Insulin participates in glucose homeostasis in the body and regulates glucose, protein, and lipid metabolism. Chronic hyperglycemia triggers oxidative stress and the generation of reactive oxygen species (ROS), leading to oxidized insulin variants. Oxidative protein modifications can cause functional changes or altered immunogenicity as known from the context of autoimmune disorders.
View Article and Find Full Text PDFIntroduction: Hippo is a signaling pathway that is evolutionarily conserved and plays critical roles in wound healing and tissue regeneration. Disruption of the transcriptional activity of both Hippo-associated factors, the yes-associated protein (YAP), and the transcriptional co-activator with PDZ binding motif (TAZ) has been associated with cardiovascular diseases, fibrosis, and cancer. This makes the Hippo pathway an appealing target for therapeutic interventions.
View Article and Find Full Text PDFIncreasing evidence suggests the role of reactive oxygen and nitrogen species (RONS) in regulating antitumor immune effects and immunosuppression. RONS modify biomolecules and induce oxidative post-translational modifications (oxPTM) on proteins that can alarm phagocytes. However, it is unclear if and how protein oxidation by technical means could be a strategy to foster antitumor immunity and therapy.
View Article and Find Full Text PDFClinical therapies, including dermatology and oncology, require safe application. In vitro experiments allow only limited conclusions about in vivo effects, while animal studies in, e.g.
View Article and Find Full Text PDFAim: The aim of the current study is to elucidate the inactivation and molecular response pattern of sublethal Listeria monocytogenes to cold plasma-mediated two-pronged oxidative microenvironments from a high-throughput multi-omics perspective.
Methods And Results: First joint transcriptomics and metabolomics analyses revealed that significantly expressed genes and metabolites were mainly involved in enhanced transmembrane transport and Fe2+/Cu+ efflux, amino acid limitation, cytoplasmic pH homeostasis, reconfiguration of central carbon metabolism flux, and energy conservation strategy, which triggered the surge of intracellular endogenous oxidative stress and finally mediated bacterial ferroptosis and pathogenicity attenuation. Typical antioxidant systems such as the TrxR-Trx system and common antioxidant genes (e.
Amphiphilic hydrogels from mixtures of 2-hydroxyethyl methacrylate and 2-(diethylamino)ethyl methacrylate p(HEMA-co-DEAEMA) with specific pH sensitivity and hydrophilic/hydrophobic structures were designed and polymerized via plasma polymerization. The behavior of plasma-polymerized (pp) hydrogels containing different ratios of pH-sensitive DEAEMA segments was investigated concerning possible applications in bioanalytics. In this regard, the morphological changes, permeability, and stability of the hydrogels immersed in solutions of different pHs were studied.
View Article and Find Full Text PDFTherapy resistance is a major reason for the fatal consequences of cancer. The tumor microenvironment (TME) often is associated with the production of excess reactive oxygen species (ROS). ROS are capable of introducing oxidative post-translational modifications (oxPTMs) to proteins targeted in cancer therapy, such as tyrosine kinases (TKs), and ROS could render their functionality.
View Article and Find Full Text PDFCyclooxygenase (COX) enzymes comprise COX-1 and COX-2 isoforms and are responsible for prostaglandin production. Prostaglandins have critical roles in the inflammation pathway and must be controlled by administration of selective nonsteroidal anti-inflammatory drugs (NSAIDs). Selective COX-2 inhibitors have been among the most used NSAIDs during the ongoing coronavirus 2019 pandemic because they reduce pain and protect against inflammation-related diseases.
View Article and Find Full Text PDFExcess amounts of redox stress and failure to regulate homeostatic levels of reactive species are associated with several skin pathophysiologic conditions. Nonmalignant cells are assumed to cope better with higher reactive oxygen and nitrogen species (RONS) levels. However, the effect of periodic stress on this balance has not been investigated in fibroblasts in the field of plasma medicine.
View Article and Find Full Text PDFCold physical plasma (CPP), a partially ionized gas that simultaneously generates reactive oxygen and nitrogen species, is suggested to provide advantages in regenerative medicine. Intraoperative CPP therapy targeting pathologies related to diminished bone quality could be promising in orthopedic surgery. Assessment of a clinically approved plasma jet regarding cellular effects on primary bone marrow mesenchymal stromal cells (hBM-MSCs) from relevant arthroplasty patient cohorts is needed to establish CPP-based therapeutic approaches for bone regeneration.
View Article and Find Full Text PDFOxidative stress in cellular environments may cause lipid oxidation and membrane degradation. Therefore, studying the degree of lipid membrane morphological changes by reactive oxygen and nitrogen species will be informative in oxidative stress-based therapies. This study introduces the possibility of using scanning electrochemical microscopy as a powerful imaging technique to follow the topographical changes of a solid-supported lipid bilayer model induced by reactive species produced from gas plasma.
View Article and Find Full Text PDFGas plasma jet technology was recently identified as a potential adjuvant in the palliation of cancer patients. However, a practical point raised is if higher therapeutic efficacy is achieved with the gas plasma applied in direct contact to the tumor tissue (conducting) or during treatment with the remote cloud of reactive oxygen and nitrogen species (ROS/RNS) being expelled. In a bedside-to-bench study, this clinical question was translated into studying these two distinct treatment modalities using a three-dimensional tumor cell-matrix-hydrogel assay with subsequent quantitative confocal imaging.
View Article and Find Full Text PDFSkin regeneration is a quite complex process. Epidermal differentiation alone takes about 30 days and is highly regulated. Wounds, especially chronic wounds, affect 2% to 3% of the elderly population and comprise a heterogeneous group of diseases.
View Article and Find Full Text PDFSeveral studies have revealed that various diseases such as cancer have been associated with elevated phospholipase A (PLA ) activity. Therefore, the regulation of PLA catalytic activity is undoubtedly vital. In this study, effective inactivation of PLA due to reactive species produced from cold physical plasma as a source to model oxidative stress is reported.
View Article and Find Full Text PDFBackground: Recent studies have emphasised the important role of amino acids in cancer metabolism. Cold physical plasma is an evolving technology employed to target tumour cells by introducing reactive oxygen species (ROS). However, limited understanding is available on the role of metabolic reprogramming in tumour cells fostering or reducing plasma-induced cancer cell death.
View Article and Find Full Text PDFGas plasma is a partially ionized gas increasingly recognized for targeting cancer. Several hypotheses attempt to explain the link between plasma treatment and cytotoxicity in cancer cells, all focusing on cellular membranes that are the first to be exposed to plasma-generated reactive oxygen species (ROS). One proposes high levels of aquaporins, membrane transporters of water and hydrogen peroxide, to mark tumor cell line sensitivity to plasma treatment.
View Article and Find Full Text PDFRecent research indicated the potential of cold physical plasma in cancer therapy. The plethora of plasma-derived reactive oxygen and nitrogen species (ROS/RNS) mediate diverse antitumor effects after eliciting oxidative stress in cancer cells. We aimed at exploiting this principle using a newly designed dual-jet neon plasma source (jet) to treat colorectal cancer cells.
View Article and Find Full Text PDFCold physical plasmas are emerging tools for wound care and cancer control that deliver reactive oxygen species (ROS) and nitrogen species (RNS). Alongside direct effects on cellular signaling processes, covalent modification of biomolecules may contribute to the observed physiological consequences. The potential of ROS/RNS generated by two different plasma sources (kINPen and COST-Jet) to introduce post-translational modifications (PTMs) in the peptides angiotensin and bradykinin was explored.
View Article and Find Full Text PDFIn this work, we report on the stability of oxygen-rich plasma-polymerized (pp) films in an aqueous environment. The pp films were deposited via atmospheric-pressure plasma jet treatment of polymerizable organic liquids. The monomers used for the plasma-assisted polymerization were tetrahydrofurfuryl methacrylate, 1,2,4-trivinylcyclohexane, and mixtures thereof.
View Article and Find Full Text PDFObjectives: In the search for more effective and safe treatment avenues, we investigated cold physical plasma as a new treatment modality for therapy of oral lichen planus (OLP).
Material And Methods: Healthy and diseased human mucosal tissue samples with a size of 3 mm in diameter obtained from OLP patients were subjected to plasma treatment ex vivo or were left untreated. Tissue sections were quantified for immune-infiltration of CD4 , CD8 , CD45RA , and CD45R0 T cells.
Reinfection in endodontically treated teeth is linked to the complexity of the root canal system, which is problematic to reach with conventional disinfection methods. As plasma is expected to have the ability to sanitize narrow areas, the aim of this study was to analyze the effect of cold atmospheric pressure plasma (CAP) on Candida albicans in root canals of extracted human teeth. CAP was applied as mono treatment and in combination with standard endodontic disinfectants (sodium hypochlorite, chlorhexidine and octenidine).
View Article and Find Full Text PDFCutaneous squamous cell carcinoma (SCC) is the most prevalent cancer worldwide, increasing the cost of healthcare services and with a high rate of morbidity. Its etiology is linked to chronic ultraviolet (UV) exposure that leads to malignant transformation of keratinocytes. Invasive growth and metastasis are severe consequences of this process.
View Article and Find Full Text PDFNew approaches in oncotherapy rely on the combination of different treatments to enhance the efficacy of established monotherapies. Pulsed electric fields (PEFs) are an established method (electrochemotherapy) for enhancing cellular drug uptake while cold physical plasma is an emerging and promising anticancer technology. This study aimed to combine both technologies to elucidate their cytotoxic potential as well as the underlying mechanisms of the effects observed.
View Article and Find Full Text PDFThe capabilities of biosensors for fast, economic, and user-friendly analysis of complex samples has led to the exploitation of analytical devices for detection, quantification, and monitoring of specific chemical species for various applications. For a sufficiently high surface reactivity toward the adopted bioreceptors, a thin functional layer is required to enable coupling of the target biomolecules and to provide good stability in the presence of a sample matrix. In this work, the generation of water-stable oxygen-rich plasma polymerized (pp) films deposited by atmospheric-pressure jet plasma for reliable immobilization of biomolecules is presented.
View Article and Find Full Text PDFCold atmospheric plasmas (CAPs) are promising medical tools and are currently applied in dermatology and epithelial cancers. While understanding of the biomedical effects is already substantial, knowledge on the contribution of individual ROS and RNS and the mode of activation of biochemical pathways is insufficient. Especially the formation and transport of short-lived reactive species in liquids remain elusive, a situation shared with other approaches involving redox processes such as photodynamic therapy.
View Article and Find Full Text PDF