We investigate factors influencing European winter (DJFM) air temperatures for the period 1979-2015 with the focus on changes during the recent period of rapid Arctic warming (1998-2015). We employ meteorological reanalyses analysed with a combination of correlation analysis, two pattern clustering techniques, and back-trajectory airmass identification. In all five selected European regions, severe cold winter events lasting at least 4 days are significantly correlated with warm Arctic episodes.
View Article and Find Full Text PDFArctic warming was more pronounced than warming in midlatitudes in the last decades making this region a hotspot of climate change. Associated with this, a rapid decline of sea-ice extent and a decrease of its thickness has been observed. Sea-ice retreat allows for an increased transport of heat and momentum from the ocean up to the tropo- and stratosphere by enhanced upward propagation of planetary-scale atmospheric waves.
View Article and Find Full Text PDFRecent research has demonstrated that additional winter radiosonde observations in Arctic regions enhance the predictability of mid-latitude weather extremes by reducing uncertainty in the flow of localised tropopause polar vortices. The impacts of additional Arctic observations during summer are usually confined to high latitudes and they are difficult to realize at mid-latitudes because of the limited scale of localised tropopause polar vortices. However, in certain climatic states, the jet stream can intrude remarkably into the mid-latitudes, even in summer; thus, additional Arctic observations might improve analysis validity and forecast skill for summer atmospheric circulations over the Northern Hemisphere.
View Article and Find Full Text PDFThe Arctic has become a hot spot of climate change, but the nonlinear interactions between regional and global scales in the coupled climate system responsible for Arctic amplification are not well understood and insufficiently described in climate models. Here, we compare reanalysis data with model simulations for low and high Arctic sea ice conditions to identify model biases with respect to atmospheric Arctic-mid-latitude linkages. We show that an appropriate description of Arctic sea ice forcing is able to reproduce the observed winter cooling in mid-latitudes as result of improved tropospheric-stratospheric planetary wave propagation triggering a negative phase of the Arctic Oscillation/North Atlantic Oscillation in late winter.
View Article and Find Full Text PDFDuring ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean.
View Article and Find Full Text PDF