DNA methylation (DNAm)-based age clocks have been studied extensively as a biomarker of human ageing and a risk factor for age-related diseases. Despite different tissues having vastly different rates of proliferation, it is still largely unknown whether they age at different rates. It was previously reported that the cerebellum ages slowly; however, this claim was drawn from a single clock using a relatively small sample size and so warrants further investigation.
View Article and Find Full Text PDFGait analysis plays an important role in the fields of healthcare and sports sciences. Conventional gait analysis relies on costly equipment such as optical motion capture cameras and wearable sensors, some of which require trained assessors for data collection and processing. With the recent developments in computer vision and deep neural networks, using monocular RGB cameras for 3D human pose estimation has shown tremendous promise as a cost-effective and efficient solution for clinical gait analysis.
View Article and Find Full Text PDFThe application of machine learning-based tele-rehabilitation faces the challenge of limited availability of data. To overcome this challenge, data augmentation techniques are commonly employed to generate synthetic data that reflect the configurations of real data. One such promising data augmentation technique is the Generative Adversarial Network (GAN).
View Article and Find Full Text PDFMotivation: Data normalization is an essential step to reduce technical variation within and between arrays. Due to the different karyotypes and the effects of X chromosome inactivation, females and males exhibit distinct methylation patterns on sex chromosomes; thus, it poses a significant challenge to normalize sex chromosome data without introducing bias. Currently, existing methods do not provide unbiased solutions to normalize sex chromosome data, usually, they just process autosomal and sex chromosomes indiscriminately.
View Article and Find Full Text PDFKnee joint moments are commonly calculated to provide an indirect measure of knee joint loads. A shortcoming of inverse dynamics approaches is that the process of collecting and processing human motion data can be time-consuming. This study aimed to benchmark five different deep learning methods in using walking segment kinematics for predicting internal knee abduction impulse during walking.
View Article and Find Full Text PDFThe recent COVID-19 pandemic has further high-lighted the need for improving tele-rehabilitation systems. One of the common methods is to use wearable sensors for monitoring patients and intelligent algorithms for accurate and objective assessments. An important part of this work is to develop an efficient evaluation algorithm that provides a high-precision activity recognition rate.
View Article and Find Full Text PDFBackground: Sex is an important covariate of epigenome-wide association studies due to its strong influence on DNA methylation patterns across numerous genomic positions. Nevertheless, many samples on the Gene Expression Omnibus (GEO) frequently lack a sex annotation or are incorrectly labelled. Considering the influence that sex imposes on DNA methylation patterns, it is necessary to ensure that methods for filtering poor samples and checking of sex assignment are accurate and widely applicable.
View Article and Find Full Text PDFResearch (Wash D C)
November 2019
Electromagnetic waves carrying an orbital angular momentum (OAM) are of great interest. However, most OAM antennas present disadvantages such as a complicated structure, low efficiency, and large divergence angle, which prevents their practical applications. So far, there are few papers and research focuses on the problem of the divergence angle.
View Article and Find Full Text PDFTwo novel image denoising algorithms are proposed which employ goodness of fit (GoF) test at multiple image scales. Proposed methods operate by employing the GoF tests locally on the wavelet coefficients of a noisy image obtained via discrete wavelet transform (DWT) and the dual tree complex wavelet transform (DT-CWT) respectively. We next formulate image denoising as a binary hypothesis testing problem with the null hypothesis indicating the presence of noise and the alternate hypothesis representing the presence of desired signal only.
View Article and Find Full Text PDFOutput from imaging sensors based on CMOS and CCD devices is prone to noise due to inherent electronic fluctuations and low photon count. The resulting noise in the acquired image could be effectively modelled as signal-dependent Poisson noise or as a mixture of Poisson and Gaussian noise. To that end, we propose a generalized framework based on detection theory and hypothesis testing coupled with the variance stability transformation (VST) for Poisson or Poissonâ»Gaussian denoising.
View Article and Find Full Text PDFWe present a data driven approach to classify ictal (epileptic seizure) and non-ictal EEG signals using the multivariate empirical mode decomposition (MEMD) algorithm. MEMD is a multivariate extension of empirical mode decomposition (EMD), which is an established method to perform the decomposition and time-frequency (T-F) analysis of non-stationary data sets. We select suitable feature sets based on the multiscale T-F representation of the EEG data via MEMD for the classification purposes.
View Article and Find Full Text PDFThe integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data.
View Article and Find Full Text PDFA novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales.
View Article and Find Full Text PDFA vision system that can assess its own performance and take appropriate actions online to maximize its effectiveness would be a step towards achieving the long-cherished goal of imitating humans. This paper proposes a method for performing an online performance analysis of local feature detectors, the primary stage of many practical vision systems. It advocates the spatial distribution of local image features as a good performance indicator and presents a metric that can be calculated rapidly, concurs with human visual assessments and is complementary to existing offline measures such as repeatability.
View Article and Find Full Text PDFSpeeded-Up Robust Features is a feature extraction algorithm designed for real-time execution, although this is rarely achievable on low-power hardware such as that in mobile robots. One way to reduce the computation is to discard some of the scale-space octaves, and previous research has simply discarded the higher octaves. This paper shows that this approach is not always the most sensible and presents an algorithm for choosing which octaves to discard based on the properties of the imagery.
View Article and Find Full Text PDF