Publications by authors named "Klaus Brockmann"

The determination of the spatially resolved ion signal with atmospheric pressure laser ionization (APLI), which was introduced as distribution of ion acceptance (DIA), serves as a valuable tool for the understanding of complex and highly dynamical conditions in modern atmospheric pressure (AP) ion sources. DIA provides information about fluid dynamics, ion transport, and ion transformation processes in such sources and is an ideal basis for the validation of numerical models of the dynamics in the ion source enclosure.We present a fully automated setup for DIA measurements, which enabled us to acquire a comprehensive dataset of over 700 individual DIA measurements in a commercial AP ion source (Bruker Multi Purpose Ion Source, MPIS).

View Article and Find Full Text PDF

In this work, the characteristics of gas flow in inlet capillaries are examined. Such inlet capillaries are widely used as a first flow restriction stage in commercial atmospheric pressure ionization mass spectrometers. Contrary to the common assumption, we consider the gas flow in typical glass inlet capillaries with 0.

View Article and Find Full Text PDF

This contribution reports on the development of an atmospheric pressure photoionization (APPI) source interfacing a gas chromatograph (GC) with a bench-top Orbitrap high resolution mass spectrometer (MS). We present efforts on method development aiming at high temperature stability (325°C), constant low impurity levels upon prolonged source operation, and efficient reaction volume irradiation combined with minimum peak broadening. The performance throughout each iterative development step was carefully assessed.

View Article and Find Full Text PDF

Rationale: Atmospheric pressure chemical ionization (APCI) sources operated with point to plane DC discharges ('Coronas') frequently suffer from point electrode degradation and potentially lead to oxidation and/or fragmentation of the generated analyte ions. It is postulated that these adverse effects are caused by the interaction of these ions with the discharge chemistry as well as en route to the mass analyzer region.

Methods: The corona discharge metal point electrode is replaced by the conically shaped liquid effluent evolving from a fused-silica capillary, which is analogous but not identical to the Taylor cone formation in electrospray ionization.

View Article and Find Full Text PDF

It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated.

View Article and Find Full Text PDF

In this study a thermally sampling atmospheric pressure ionization mass spectrometer is described and characterized. The ion transfer stage offers the capability to sample cluster ions at thermal equilibrium and during this transfer fundamental processes possibly affecting the cluster distribution are also readily identified. Additionally, the transfer stage combines optional collision-induced dissociation (CID) analysis of the cluster composition with thermal equilibrium sampling of clusters.

View Article and Find Full Text PDF

We report on a novel method for atmospheric pressure ionization of compounds with elevated electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.

View Article and Find Full Text PDF

The performance of a KrF* bench top excimer laser and a compact diode pumped UV solid state (DPSS) Nd:YAG laser as photo-ionizing source in LC-APLI MS is compared. The commonly applied bench-top excimer laser, operating at 248 nm, provides power densities of the order of low MW/cm(2) on an illuminated area of 0.5 cm(2) (8 mJ/pulse, 5 ns pulse duration, beam waist area 0.

View Article and Find Full Text PDF

We report on the development of a novel atmospheric pressure photoionization setup and its applicability for in situ degradation product studies of atmospherically relevant compounds. A custom miniature spark discharge lamp was embedded into an ion transfer capillary, which separates the atmospheric pressure from the low pressure region in the first differential pumping stage of a conventional atmospheric pressure ionization mass spectrometer. The lamp operates with a continuous argon flow and produces intense light emissions in the VUV.

View Article and Find Full Text PDF

In this study, the validation and analysis of steady state numerical simulations of the gas flows within a multi-purpose ion source (MPIS) are presented. The experimental results were obtained with particle image velocimetry (PIV) measurements in a non-scaled MPIS. Two-dimensional time-averaged velocity and turbulent kinetic energy distributions are presented for two dry gas volume flow rates.

View Article and Find Full Text PDF

We report on the reactions of neutral radical species [OH, Cl, O(3P), H], generated in a typical atmospheric pressure ionization (API) source upon irradiation of the sample gases with either 193 nm laser radiation or 124 nm VUV light, the latter commonly used in atmospheric pressure photoionization (APPI). The present investigations focus on the polycyclic aromatic hydrocarbon pyrene as representative of the aromatic compound class. Experimental results are supported by computational methods: simple kinetic models are used to estimate the temporal evolution of the concentrations of reactants, intermediates, and final products, whereas density functional theory (DFT) energy calculations are carried out to further elucidate the proposed reaction pathways.

View Article and Find Full Text PDF

Over the past decade, multimode ion sources operating at atmospheric pressure (i.e., more than one ionization method is operative in the ion source enclosure) have received considerable interest.

View Article and Find Full Text PDF

We report on the successful application of the recently introduced atmospheric pressure laser ionization (APLI) method as a novel tool for the analysis of crude oil and its components. Using Fourier transform ion cyclotron resonance mass spectrometry, unambiguous determination of key compounds in this complex matrix with unprecedented sensitivity is presented.

View Article and Find Full Text PDF

Recently we have established atmospheric-pressure laser ionisation (APLI) as a method for coupling time-of-flight mass spectrometric detectors (TOF MS) with chromatographic systems (HPLC and GC) to allow two-photon ionisation of non-polar aromatic compounds. Here we demonstrate that APLI can be combined with chip-electrospray ionisation (cESI) coupled to Fourier-transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) for ultrahigh-resolution analysis of complex samples. With the laser turned off, the analytes are ionised only by ESI, whereas when the laser is switched on non-polar aromatic substances also are ionised.

View Article and Find Full Text PDF

It is demonstrated that spatially resolved mass selected analysis using atmospheric pressure laser ionization mass spectrometry (APLI MS) represents a new powerful tool for mechanistic studies of ion-molecule chemistry occurring within atmospheric pressure (AP) ion sources as well as for evaluation and optimization of ion source performance. A focused low-energy UV laser beam is positioned computer controlled orthogonally on a two-dimensional grid in the ion source enclosure. Resonance enhanced multiphoton ionization (REMPI) of selected analytes occurs only within the confined volume of the laser beam.

View Article and Find Full Text PDF

We describe the successful coupling of CEC and capillary HPLC with the recently developed atmospheric-pressure laser ionization (APLI) method. APLI is suitable for selectively and sensitively ionizing nonpolar aromatic compounds at ambient pressure for subsequent mass-selective detection. The polycyclic aromatic hydrocarbons used as analytes are first separated either by CEC on a silica-based monolithic column or by capillary HPLC.

View Article and Find Full Text PDF

The detection limits for NO and NO2 in turbine exhausts by nonintrusive monitoring have to be improved. Multipass mode Fourier-transform infrared (FTIR) absorption spectrometry and use of a White mirror system were found from a sensitivity study with spectra simulations in the mid-infrared to be essential for the retrieval of NO2 abundances. A new White mirror system with a parallel infrared beam was developed and tested successfully with a commercial FTIR spectrometer in different turbine test beds.

View Article and Find Full Text PDF