Maladaptive plasticity involving increased expression of AMPA-type glutamate receptors is involved in several pathologies, including neuropathic pain, but direct inhibition of AMPARs is associated with side effects. As an alternative, we developed a cell-permeable, high-affinity (~2 nM) peptide inhibitor, Tat-P -(C5) , of the PDZ domain protein PICK1 to interfere with increased AMPAR expression. The affinity is obtained partly from the Tat peptide and partly from the bivalency of the PDZ motif, engaging PDZ domains from two separate PICK1 dimers to form a tetrameric complex.
View Article and Find Full Text PDFPurpose: Results of an evaluation of the stability of methotrexate in 0.9% sodium chloride injection and 5% dextrose injection are presented.
Methods: Methotrexate concentrated solution (100 mg/mL) was diluted to nominal concentrations of 0.
PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins.
View Article and Find Full Text PDFDimeric peptide-based inhibitors of postsynaptic density-95 (PSD-95) can reduce ischemic brain damage and inflammatory pain in rodents. To modify the pharmacokinetic profile, we designed a series of fatty acid linked dimeric ligands, which potently inhibits PSD-95 and shows improved in vitro blood plasma stability. Subcutaneous administration in rats showed extended stability and sustained release of these ligands.
View Article and Find Full Text PDFInhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-D-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors are lacking. Here we report the design and synthesis of a novel dimeric inhibitor, Tat-NPEG4(IETDV)(2) (Tat-N-dimer), which binds the tandem PDZ1-2 domain of PSD-95 with an unprecedented high affinity of 4.6 nM, and displays extensive protease-resistance as evaluated in vitro by stability-measurements in human blood plasma.
View Article and Find Full Text PDF