Publications by authors named "Klaus B Mogensen"

Localized surface plasmon resonances (LSPR) and plasmon couplings in Ag capped Si Nanopillar (Ag NP) structures are studied using 3D FEM simulations and dark-field scattering microscopy. Simulations show that a standalone Ag NP supports two LSPR modes, i.e.

View Article and Find Full Text PDF

Chemicals typically available in plants have the capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges as reducing agents. The evolvement of a characteristic surface plasmon extinction spectrum in the range of 420 nm to 480 nm indicates the formation of silver nanoparticles after mixing silver nitrate solution and fruit extract.

View Article and Find Full Text PDF

We observed strong surface-enhanced Raman scattering on discontinuous nanostructured aluminum films using 785 nm excitation even though dielectric constants of this metal suggest plasmon supported spectroscopy in the ultraviolet range. The excitation of SERS correlates with plasmon resonances in the 1.3-2.

View Article and Find Full Text PDF

The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have already been demonstrated in more classical formats, for improved separation performance in gas and liquid chromatography, and for unique applications in solid phase extraction. Carbon nanotubes are now also entering the field of microfluidics, where there is a large potential to be able to provide integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels.

View Article and Find Full Text PDF

We report fabrication and characterization of nanochannel devices with two nanopores in series for resistive-pulse sensing of hepatitis B virus (HBV) capsids. The nanochannel and two pores are patterned by electron beam lithography between two microchannels and etched by reactive ion etching. The two nanopores are 50-nm wide, 50-nm deep, and 40-nm long and are spaced 2.

View Article and Find Full Text PDF

Electrically insulated carbon nanotube (CNT) based separation columns have been fabricated that can withstand an electrical field strength of more than 2.0 kV cm(-1) without bubble formation from electrolysis. The carbon nanotubes were grown in a pillar array defined by photolithographic patterning of the catalyst layer used for synthesis of the nanotubes.

View Article and Find Full Text PDF

A refractive index sensor has been fabricated in silicon oxynitride by standard UV lithography and dry etching processes. The refractive index sensor consists of a 1D photonic crystal (PhC) embedded in a microfluidic channel addressed by fiber-terminated planar waveguides. Experimental demonstrations performed with several ethanol solutions ranging from a purity of 96.

View Article and Find Full Text PDF

Simultaneous label-free detection of UV absorbance and native UV-excited fluorescence in an electrophoresis microchip is presented. UV transparent integrated waveguides launch light at a wavelength of 254 nm from a mercury lamp along the length of a 1-mm long detection cell. Transmitted UV light is collected by another waveguide in the opposite end of the detection cell, while visible fluorescence is collected vertically through the lid of the chip.

View Article and Find Full Text PDF

Optical detection schemes continue to be favoured for measurements in microfluidic systems. A selection of the latest progress mainly within the last two years is critically reviewed. Emphasis is on integrated solutions, such as planar waveguides, coupling schemes to the outside world, evanescent-wave based detectors and the field of optofluidics.

View Article and Find Full Text PDF

We report, for the first time, the use of underivatized cyclic olefin copolymer (COC, more specifically: Topas) as the substrate material and the stationary phase for capillary and microchip electrochromatography (CEC), and demonstrate chromatographic separations without the need of coating procedures. Electroosmotic mobility measurements in a 25 microm id Topas capillary showed a significant cathodic EOF that is pH-dependent. The magnitude of the electroosmotic mobility is comparable to that found in glass substrates and other polymeric materials.

View Article and Find Full Text PDF

Electrically insulated porous SiO2 channels for electrokinetic separation devices were fabricated based on a mask-less etching process for creation of high aspect ratio needles in silicon. The silicon needles are converted to SiO2 by oxidation and integrated within the interior of a fluidic channel network. The channels are about 5 microm high with a pore size of 0.

View Article and Find Full Text PDF

Microfluidic systems have become more and more important in the field of analytical chemistry. Detection methods on these microsystems are essential for the identification and quantification of chemical species that are being analyzed. This review concentrates on the latest developments of optical detection methods and mass spectrometry in conjunction with microfluidic systems.

View Article and Find Full Text PDF

A new fabrication procedure for integration of ultraviolet transparent pure-silica planar waveguides, fiber couplers and high-aspect ratio submicrometer channels is presented. Only a single photolithographic mask step is required. The channels are 80-90 microm deep and the width can be reduced to about 0.

View Article and Find Full Text PDF

An attempt is made to revisit the main theoretical considerations concerning temperature effects ("Joule heating") in electro-driven separation systems, in particular lab-on-a-chip systems. Measurements of efficiencies in microfabricated devices under different Joule heating conditions are evaluated and compared to both theoretical models and measurements performed on conventional capillary systems. The widely accepted notion that planar microdevices are less susceptible to Joule heating effects is largely confirmed.

View Article and Find Full Text PDF

A microfabricated capillary electrophoresis device for velocity measurements of flowing particles is presented. It consists of a 1 x 128 planar waveguide beam splitter monolithically integrated with an electrically insulated fluidic channel network for fluorescence excitation at multiple points. Stray light rejection structures are included in order to suppress unwanted light between the detection regions.

View Article and Find Full Text PDF

Multimode polymer waveguides and fiber-to-waveguide couplers have been integrated with microfluidic channels by use of a single-mask-step procedure, which ensured self-alignment between the optics and the fluidics and allowed a fabrication and packaging time of only one day. Three fabrication procedures for obtaining hermetically sealed channels were investigated, and the spectrally resolved propagation loss (400-900 nm) of the integrated waveguides was determined for all three procedures. Two chemical absorbance cells with optical path lengths of 100 and 1000 microm were furthermore fabricated and characterized in terms of coupling loss, sensitivity, and limit of detection for measurements of the dye bromothymol blue.

View Article and Find Full Text PDF

A microfluidic device with integrated waveguides and a long path length detection cell for UV/Vis absorbance detection is presented. The 750 microm U-cell detection geometry was evaluated in terms of its optical performance as well as its influence on efficiency for electrophoretic separations in the microdevice. Stray light was found to have a strong effect on both, the sensitivity of the detection and the available linear range.

View Article and Find Full Text PDF